
Like

PROFILER OBJECT ATTRIBUTES AND METHODS

< Back to search results

INFORMATION

Article Number 000001426

Environment Product: OpenEdge

Version: All supported versions

OS: All supported platforms

Question/Problem
Description

PROFILER Object attributes and methods

What is the Profiler Control Tool?

What is the PROFILER object?

What is the PROFILER system handle?

What is the relationship between the Profiler Control Tool and the 4GL/ABL PROFILER object?

Documentation for PROFILER object attributes and methods

Steps to Reproduce

Clarifying Information

Error Message

Defect/Enhancement
Number

Cause

The Profiler Control Tool is an unsupported tool which can be used to perform profiler analysis of a Progress based

application. The Profiler Control tool is designed to simplify the profiling and analysis of the performance data that the

Progress run-time executable generates. This tool is a complete rewrite of the performance profiling tool that ships with

some versions of Progress. This tool includes a GUI for simplifying the launching and stopping of procedures. It has the

ability to detect whether Progress Dynamics is running and allow the launching of dynamic containers as well as static

smart objects and other procedures. It includes all of the same information but removes much of the complexity of the

previous tool by removing the requirement for a database and the timing consuming loading of profile data. In addition to

previous execution statics, more information has been added. This tool also includes added functionality that gives the

user the ability to perform side-by-side compares and exporting of data to external programs.

Printable View

Resolution

PRODUCTS SERVICES SUPPORT & LEARNING PARTNERS COMPANY

1-800-477-6473 READY TO TALK?



The Profiler Control tool is available on Progress Communities at https://community.progress.com/technicalusers

/w/openedgegeneral/1980.profiler-control-tool.aspx.

Documentation is included in the Profiler_Readme.doc file. 

An earlier version of the tool was included with Progress 9.x and OpenEdge 10.0x in the %DLC%\src\samples\profiler

directory.

From OpenEdge 11.6 onwards, Progress Developer Studio provides a built-in Profiler Editor perspective which is

supported and provides the same features as the unsupported version.

Refer to article 000064682, "Profiler Editor - new feature in the 11.6 Progress Developer Studio for OpenEdge " or the

online documentation here:

https://documentation.progress.com/output/ua/OpenEdge_latest/#page/pdsoe%2Fprofiler-editor.html

The PROFILER object can be used to control 4GL program execution profiling, data recording, and analysis. This

undocumented system handle provides access from 4GL/ABL code to the same information available interactively in the

Profiler Control Tool. There are command line startup parameters that can be used to set the initial values of the Profiler

object attributes.

The following lists and describes the PROFILER object attributes:

COVERAGE

Read/Write

Logical

Initial value is No

The value of this attribute determines whether or not the Profiler records information that can be used for coverage

analysis.

When set to True, the Profiler records statement and internal procedure coverage information for each external .p

procedure that is executed. This information is included in the output file that is written when the Profiler analyzes all of

the recorded data.

The information recorded for the PROFILER:COVERAGE attribute identifies the statements that could have been

executed for any given procedure. These, combined with the timing data that tells what statements were actually

executed, can be used to perform 4GL application code coverage analysis. For example, it can be determined that when

the application was tested, only 30% of its code was executed.

The profiler records the information for coverage analysis only the first time an external .p procedure is executed. If the

PROFILER:COVERAGE attribute is False the first time a procedure is executed, coverage analysis information is not

registered, even if it is set to True at a later time.

DESCRIPTION

Read/Write

Character.

Initial value is "Unspecified"

The value of this attribute is a character description of the current profiling session. This string is included as part of the

data that is written to the profile output file.

DIRECTORY

Read/Write

Character.

Initial value is either the -T directory or the current working directory if -T was not specified.



The value of the DIRECTORY attribute specifies the name of the file system directory into which automatically-generated

profiler debug listing files should be written.

The attribute cannot be set to the Unknown value, and does not permit itself to be set to an invalid directory.

ENABLED

Read/Write

Logical.

Initial value is False

The value of this attribute determines whether or not the Profiler is enabled. The True setting activates and initializes the

Profiler.

When the profiling process is first enabled, Progress registers all currently active procedures and assigns module

identifiers to them. An active procedure is any persistent procedure or any procedure on the Progress procedure call

stack.

For each active procedure, except those that are part of the ADE, a PROFILER:LISTINGS setting of True also generates

listing files. In addition, a True setting records coverage analysis information.

To generate listing files or coverage analysis information, set PROFILER:LISTINGS or PROFILER:COVERAGE attributes

to True before setting PROFILER:ENABLED to True.

As long as profiling is enabled, Progress maintains a registry of the procedures that have executed, regardless of whether

profiling is turned on or off (controlled by the setting of the PROFILER:PROFILING attribute).

When profiling is disabled (by setting PROFILER:ENABLED to False) Progress writes accumulated profiling data to the

profiler output file and then discards the registry of procedures that have been executed.

FILE-NAME

Read/Write

Character.

Initial value is "profile.out"

The value of this attribute specifies the name of the output file into which the profiling output data should be written after

the raw recorded data has been analyzed.

This attribute cannot be set to the Unknown value.

LISTINGS

Read/Write

Logical

Initial value is False

The value of this attribute determines whether or not the profiler should try to automatically generate debug listing files for

the 4GL code that is being profiled.

The profiler generates a debug listing file the first time that a procedure is executed. Therefore, if PROFILER:LISTINGS is

False the first time a procedure is executed, setting it to True at a later time does not cause the profiler to try to generate

the listing file for that procedure. In other words, the profiler

only registers a module (assigns it a unique identifier) the first time the module executes, and the profiler only generates

debug listing files for modules that are external procedures. If PROFILER:LISTINGS is False when a procedure first

executes, the profiler never tries to generate a debug listing file for that procedure.

The profiler can only try to generate debug listing files. It fails if the source files are not accessible. The source files that



comprise a procedure must be in the PROPATH in order for the profiler to generate a debug listing file. If the profiler

cannot generate a debug listing file for a given procedure, it treats the procedure as though the PROFILER:LISTINGS

setting was False when that procedure first executes.

The only way to get a Progress session to try again to generate the debug listing for a procedure is to disable and then

re-enable the profiler by setting PROFILER:ENABLED to False (which causes Progress to discard its profiler registry of

procedures) and then set it to True again.

PROFILING

Read/Write

Logical

Initial value is False

The value of this attribute determines whether or not the Profiler should record data during application execution.

A change to the value of this attribute turns profiling data recording on or off. The settings of the attributes that control

what data is to be recorded and the data that has been recorded are unaffected when profiling is turned off. Data

recording resumes when profiling is turned on again.

TRACE-FILTER

Read/Write

Character

Initial value is "".

The value of this attribute is a comma-separated list of string matching patterns that specify the names of procedures for

which the Profiler should record detailed timing information.

The expression patterns are interpreted in the same way as does the 4GL built-in MATCHES() function. If a procedure

name matches one of the patterns on the list, the Profiler records detailed timing information for every executable line in

that procedure.

In addition to recording summary timing data for each executable line, TRACE-FILTER records timing information each

time a statement is executed. With this detailed information, a complete execution trace for the application can be

established.

If the value of TRACE-FILTER is "" (an empty string), the pattern matches no procedure names. When no procedure

names are matched, the only tracing information the Profiler records is that which is specified by the

PROFILER:TRACING attribute (see below).

If the value is "*", the pattern matches all procedure names.

The pattern matching for TRACE-FILTER is case insensitive.

Examples:

To get tracing information for all enable_UI procedures, set TRACE-FILTER to "enable_UI *".

To get tracing information for all enable_UI procedures and also all executable lines in the procedure hello.p, set TRACE-

FILTER to "enable_UI *,*hello.p".

The TRACE-FILTER patterns are examined by the Profiler only as it analyzes the data in the raw data temporary file in

preparation for writing data to the output file. This usually occurs during PROFILER:WRITE-DATA() calls or at the end of

the session.

In theory, the TRACE-FILTER value can be set any time before the Profiler writes the data for the session to its output file.



However, when the raw data temporary file becomes too large, the Profiler does a partial analysis on the fly. To avoid this,

set the TRACE-FILTER pattern before any procedure intended to match the pattern is run.

Redundant entries in the PROFILER:TRACE-FILTER list are automatically removed.

TRACING

Read/Write

Character

Initial value is "".

The value of this attribute is a comma-separated list of procedure names and listing line numbers corresponding to

specific 4GL statements for which the Profiler will record detailed timing information.

Each element in the list should have the format:

procedure-name|line-number

where procedure-name is the name of a main .p procedure (not an internal procedure, etc.) and line number is the debug

listing line number of the statement to be traced. The list elements are separated by commas.

If TRACING is set to "" (the empty string), the only tracing information that is recorded is what is specified by

the PROFILER:TRACE-FILTER attribute.

The TRACING list is examined by the Profiler only as it is analyzing the data in the raw data temporary file in

preparation for writing data to the output file. This examination usually occurs during PROFILER:WRITE-DATA() calls or

at the end of the session.

In theory, the TRACING value can be set any time before the Profiler writes the data for the session to its output

file. However, when the raw data temporary file becomes too large, the Profiler does a partial analysis on the fly. To avoid

this, set the TRACING list before any statements to be traced are executed.

Redundant entries in the PROFILER:TRACING are automatically removed.

The following lists Profiler methods and their descriptions:

USER-DATA (val AS Char)

Return value: Logical

This method allows an application to write its own information to a special section at the end of the profile output file. The

data to be written is specified by the parameter value passed in the method call.

If successful, USER-DATA() returns True. It returns False if it fails to write the data. A failure can occur only if the

Profiler is unable to open a temporary file.

If value (val) is Unknown, then a question mark (?) is written, otherwise val is enclosed in quotes (any embedded

quotes, quoted). This is the standard format Progress uses for exported data.

In addition to the string value, the Profiler writes an integer value that represents the number of microseconds that

have elapsed since the start of the profiling process.

WRITE-DATA()

Return value: Logical

This method instructs the profiler to analyze the data that has been recorded and to write the current information to the

profile output file.



If the write is successful, the Profiler returns True. It returns False if it fails to write the data. A failure to write data could

mean either there is no new data or that the Profiler could not open the specified output file.

Time spent analyzing and writing the profiling data is deducted from any future data profiling.

Workaround

Notes References to Other Documentation:

Profiler Control tool can be found on the Progress Community Website, login access is required.

https://community.progress.com/technicalusers/w/openedgegeneral/1980.profiler-control-tool.aspx

Progress Article(s):

000001493, "What is the Profiler Control Tool?"

000064682, "Profiler Editor - new feature in the 11.6 Progress Developer Studio for OpenEdge"

Attachment

Last Modified Date 6/8/2018 8:44 AM

Disclaimer The origins of the information on this site may be internal or external to Progress Software Corporation (“Progress”).

Progress Software Corporation makes all reasonable efforts to verify this information. However, the information provided

is for your information only. Progress Software Corporation makes no explicit or implied claims to the validity of this

information.

Any sample code provided on this site is not supported under any Progress support program or service. The sample code

is provided on an "AS IS" basis. Progress makes no warranties, express or implied, and disclaims all implied warranties

including, without limitation, the implied warranties of merchantability or of fitness for a particular purpose. The entire risk

arising out of the use or performance of the sample code is borne by the user. In no event shall Progress, its employees,

or anyone else involved in the creation, production, or delivery of the code be liable for any damages whatsoever

(including, without limitation, damages for loss of business profits, business interruption, loss of business information, or

other pecuniary loss) arising out of the use of or inability to use the sample code, even if Progress has been advised of

the possibility of such damages.

Disclaimer
The origins of the information on this site may be internal or external to Progress Software Corporation (“Progress”). Progress Software Corporation

makes all reasonable efforts to verify this information. However, the information provided is for your information only. Progress Software Corporation

makes no explicit or implied claims to the validity of this information.

Any sample code provided on this site is not supported under any Progress support program or service. The sample code is provided on an "AS IS"

basis. Progress makes no warranties, express or implied, and disclaims all implied warranties including, without limitation, the implied warranties of

merchantability or of fitness for a particular purpose. The entire risk arising out of the use or performance of the sample code is borne by the user. In no

event shall Progress, its employees, or anyone else involved in the creation, production, or delivery of the code be liable for any damages whatsoever

(including, without limitation, damages for loss of business profits, business interruption, loss of business information, or other pecuniary loss) arising out

of the use of or inability to use the sample code, even if Progress has been advised of the possibility of such damages.



Feedback
Was this article helpful?

Yes No

Copyright © 2017 Progress Software Corporation and/or its subsidiaries or

affiliates.

All Rights Reserved.

Progress, Telerik, and certain product names used herein are trademarks
or registered trademarks of Progress Software Corporation and/or one of
its subsidiaries or affiliates in the U.S. and/or other countries. See
Trademarks for appropriate markings.

Terms of Use Privacy Policy Trademarks License Agreements
Careers Offices


