
4GL Code Analytics
Unique Tools for Deep Code Analysis and Inspection

Greg Shah
Golden Code Development

Thursday November 5, 2020

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Agenda

● Background

● Handling Flexibility and Scale

● Standard Reports

● Search

● Custom Reports

● Usage Tips

● How to Get Started

Background

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Why Use FWD Analytics?
● Reduce development effort.

● Improve code quality.

● Deeply understand and explore existing code.

● Compensate for missing documentation.

● Empower developers to more capably handle:

● The most complex refactoring, transformation and
modernization problems; AND

● Making changes at scale, even with the largest of
applications.

Handling Flexibility and Scale

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Your Source Is Not Helping

● Programmatic analysis of an application needs
to be aware of the 4GL language syntax.

● Your source code is text. That text is non-
regular and ambiguous.
– different text, same meaning (non-regular code)
– same text different meaning (ambiguous code)

● The 4GL suffers from this problem more than
most languages.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Non-Regular Code
Non-Regular Code Feature Description Different Text, Same Meaning

Case Insensitivity Source code may be entered with any case (all upper, all
lower, mixed). This frees the programmer from having to
think about or match specific case of keywords and
symbols (including user defined symbols).

Display
DISPLAY
display
dIsplay
disPlay

Keyword Abbreviations Some keywords (not all of them are documented) are
allowed to be arbitrarily abbreviated to some minimum
number of characters.

display
displa
displ
disp

Database Symbol Abbreviations 4GL source code will include direct references to database
table names and database field names. Both table and field
names are user defined symbols. The references can be
arbitrarily abbreviated to the smallest form of the symbol
that does not overlap with any other field. What is actually
allowed will depend on the context of where the name
references occur. Changes in surrounding code can make
some abbreviations possible that would not be valid in other
places of the same program.

Given two tables cust and customer, all of the
following refer to the customer table:
customer
custome
custom
custo

Given two fields (not necessarily in the same
table) name and number, all the following refer
to number:
number
numbe
numb
num
nu

If cust and customer both have name and
number, then all of these refer to
customer.number:
customer.number
custome.number
custom.num
custo.nu
...

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Non-Regular Code
Non-Regular Code Feature Description Different Text, Same Meaning

Optional Database Name Qualifiers Database tables and fields can appear in either a qualified
or unqualified form. What is actually allowed will depend on
the context of where the name references occur. Changes
in surrounding code can make some unqualified forms
possible that would not be valid in other places of the same
program.

Table:
mydb.customer
Customer

Field:
mydb.customer.number
customer.number
number

Ordering of Options/Clauses The ordering of keywords, options and clauses in most
statements is very flexible. This was probably an
unavoidable consequence of the keyword-heavy nature of
the 4GL syntax. Since there is a low ratio of punctuation to
keywords, there are relatively fewer natural cues in the
language to differentiate the grammatical structure of
“sentences” (statements). Without the flexible ordering, the
syntax would be harder to remember.

def var num format “999” init 14
extent 4.

def var num init 14 extent 4 format
“999”.

Synonyms Some punctuation and keywords can be used
interchangeably. Often these are undocumented
capabilities.

Most code blocks can have their header ended
with either a . (period) or a : (colon).

function help returns int ().
end.
function help returns int ():
end.

Keywords WAIT and WAIT-FOR are synonyms
even though WAIT-FOR cannot be abbreviated
(WAIT-FO is not valid):

WAIT go of my-widget.
WAIT-FOR go of my-widget.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Ambiguous Code
Ambiguous Code Feature Description Same Text, Different Meaning

Unreserved Keywords With roughly 2000 keywords in the language,
not all of them could be made into reserved
keywords (keywords whose text cannot be a
user-defined symbol). Over 400 keywords
are reserved, leaving the other 1600
(approximately) as unreserved. The
keywords can appear as source text for user-
defined names.

A user defined function encrypt() can be
named the same as the built-in function
encrypt() that uses an unreserved keyword:

some-var = encrypt(some-data).

Overloading Punctuation and Keywords Some punctuation and keywords are used for
multiple purposes, whose function is
differentiated by the context of the program.

The . (period or dot) is used for many
purposes: statement terminator, qualified
database name separator, date separator,
decimal point, package name separator,
included in a unquoted filename.

The : (colon) is similarly overloaded, including
many cases where it can be substituted for
the . (period).

The ERROR keyword can be used as part of
an ON ERROR clause, as a handle-based
attribute, as a key function, as a type of alert-
box, as a built-in function or as part of the
RETURN statement.

Many Namespaces The 4GL contains 19 different namespaces,
some of which are “flat” and some of which
are scoped to code blocks. The same user
defined symbols can appear in any and all of
these namespaces in the same program.

A variable can be named the same thing as a
stream which can be the same name as a
buffer, and so forth.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Syntax Flexibility Increases Cost

● The more flexible the language’s grammar, the larger
the set of possible valid constructs that can be written by
the programmer.

● This may lead to marginal time savings when creating
new programs.

● That increased flexibility magnifies the long term cost of
reading, maintenance, debugging, support and
refactoring.

● Greater flexibility in syntax results in greater long
term cost over the life cycle of an application.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Abstract Syntax Trees (ASTs)

● To enable proper analysis of code, we must transform
the text into a data structure that represents the purest
form of the code.

● ASTs represent the code’s language syntax without
syntactic sugar. The result is regular and
unambiguous.

● This allows the meaning of the code (its semantics)
to be separated from the messiness of the
representation (the highly varying syntax).

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Scale Multiplies Issues

● Spread that syntax flexibility across tens of thousands
of files and millions of lines of code.

● How do you find specific patterns?
● How do you even know if you have found all matches?
● Brute force is not enough.
● Scale makes hard problems impossible (or at least

impractical).
● Automation is the only practical solution.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

TRee Processing Language (TRPL)
● FWD provides tools to parse an entire application.

● Each source file and each schema file (.df) will be
represented as an AST.

● TRPL is the analysis and transformation toolset in
FWD which can operate on the entire set of ASTs
as a batch.

● When you process trees, it is commonly called a
tree walk.

● TRPL includes an engine that handles the tree
walking for programs written in the TRPL language.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

AST Designed for Transformation
● At parse time, there is a great deal of knowledge about the code. Encoding that

knowledge into the tree makes downstream work easier.

● Resolving data types of each expression component is very important. This allows
downstream code to calculate the type of each subexpression or expression in the
application.

● By tracking resources by scope and creating linkages between the references and the
definition, it becomes easier to work with these resources later.

● Structuring the tree is important. This can make it easier to walk the tree, match
patterns and transform.
– Multiple nodes can be rewritten as a single unambiguous node (e.g. KW_DEFINE

KW_PARAMETER can be written as DEFINE_PARAMETER).

– Artificial nodes can be inserted to group multiple related nodes.

● Calculated values and context-specific information are stored in the associated nodes
as annotations.

● The ASTs created by FWD were designed with these issues (and others) in mind.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Report Generation

● After the entire application has been parsed, we can run the
report generation step.

● This is a non-interactive process that runs a set of pre-
defined TRPL programs to calculate a few hundred reports.

● This can take minutes for a small project or hours for a
large project.

● Both the parsing and the report generation can be scripted
and used in CI or build servers.

● After the reports are generated, they can be accessed via
an interactive web interface.

Standard Reports

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Initial Reports Screen
● List of predefined reports on left

● Currently viewed report on right

● Most reports are a set of mutually exclusive
categories

● Summary statistics for the report at the top

● Individual categories have their own statistics

● Filter and sort columns using the column
header

● Click on a row in the current report to see the
exact list of matches

● Pagination controls at the bottom

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Summary Report
● When a report is selected from the available

reports list, the selected Summary Report is
loaded into the right side of the screen.

● Each Summary Report organizes the
matches based on categories, one row per
category.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Summary Report
● The title is the report name (e.g. "Language Statement Usage") followed by the total number

of matches (e.g. there are 24,366 matches to a Language Statement) and the number of files
that contained matches (e.g. 45).

● Each report has a match condition that is being used to determine whether an AST node
(from the code or a schema) should be included in the report. This match condition is a single
boolean expression, which can be of arbitrary complexity.

● By default the table is sorted based on the number of matches, descending. The user can
override the sorting using the up/down pointing triangles in the header of each column.

● To improve performance, the number of categories shown at once is limited. For reports that
have large numbers of categories, there will be multiple "pages" available via the pagination
controls in the lower right corner.

● The CSV link at the top right of the report allows the report contents to be exported to a CSV
format.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Summary Report Columns
● Category

– Each match in a report will be categorized into a single mutually exclusive named "bucket".

– The matches in one category can never appear in another category for the same report.

– The total number of categories is in parenthesis in the header of the column (e.g. 78 in this example).

– If you want to quickly jump to a specific category name, case-insensitive filtering is available.

– The tooltip for the header of this column will show the TRPL expression being used as the condition match
for the report's results.

● Conversion Support Level/Runtime Support Level

– Optional column describes the level of support in FWD for converting/running the associated 4GL
language feature.

– If this column does not exist, it means that the AST nodes being matched in this report do not yet have
gap analysis marking rules.

● Matches - The number of AST node matches for this category.

● % - The percentage column just to the right of the Matches column is the category's matches / total matches
expressed as a percentage.

● Files - The number of files that have AST node matches for this category.

● % - The percentage column just to the right of the Files column is the category's files with matches / total files
with matches expressed as a percentage.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Details Report

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Details Report
● The Details Report will be loaded by clicking on the Category row of the Summary Report. When the

Details Report loads, it replaces the content table of the "parent" Summary Report. It is loaded into that
same space formerly occupied by the Summary Report contents.

● Notice that the parent Summary Report's title remains visible at the top, but the Details Report has been
loaded where the Summary Report table was previously displayed.

● The Details Report has a title of its own that is the category name from the Summary Report (e.g. "run
[KW_RUN]") followed by the number of matches in the category (e.g. there are 1,316 RUN statements in
the project) and the number of files that contained matches (e.g. 38 files had RUN statements).

● Each match in the Details Report is a single row. That means that a row is specific to a specific AST node
location in a single file (4GL code or schema).

● Match Text - Formatted text showing some useful information about the match. The content of this will
vary by report. Some may be simple text from the source files and others will show a text rendering of a
node or subtree from the AST.

● Hovering the mouse pointer over the Match Text cell of a specific row will show a tooltip with the a
potentially larger, multi-line version of the Match Text.

● Click on a row to display the Source/AST View for the specific match being referenced. The Source/
AST View is a tool for reviewing and exploring the preprocessed source code (or schema) text and the
associated AST.

● The CSV link at the top right of the report allows the report contents to be exported to a CSV format.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Support Levels
Support

Level
Conversion or

Runtime
Description

Unknown Both The support level is not known.

None Both There is no support for this feature.

Stubs Runtime Only Runtime functionality stubbed out, but not implemented. This means
that there are placeholder classes and methods in the Java code,
sufficient for any converted code to compile. BUT these classes and
methods have no real implementation inside, they are just there to
satisfy the javac compiler.

Untested Runtime Only A runtime implementation exists, but it needs testing. It is likely
there are issues to resolve to achieve compatibility.

Partial Both Partial runtime support is implemented but there is at least some
implementation missing.

Basic Both A basic implementation is available but there are limitations which
require more work before having a complete implementation. This is
typically a statement of more compatibility testing being needed.

Full
(Restricted)

Both Full support is implemented, but there are permanent restrictions.
This is typlically due to some feature that does not make sense or is
not needed in Java.

Full Both Full support is implemented. It is expected to be fully compatible.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Source/AST View
● Fully preprocessed file on left with the match

selected in pink.

● Current selection in the AST on the right.

● Source and AST views are linked, a selection on
either side is highlighted and made visible on the
other side.

● Hover mouse over an AST node to get details.

● Shift-click on the “root” node of the subtree to
traverse up the tree.

● Ctrl-click on a child node to traverse down the tree.

● Zoom (mouse wheel scrolling) and Pan (left mouse
dragging) the AST pane.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

AST Pane
● When first entered, the AST Pane will display a sub-tree that corresponds with the magenta colored initial selection in the Code

Pane.

● Subsequent left-clicks in the Code Pane may change the green colored current selection which will lead to the AST Pane
displaying a different sub-tree.

● Consider this code: RUN contextHelp IN gshSessionManager (INPUT THIS-PROCEDURE, INPUT FOCUS).

● This is just one line of code of hundreds or
thousands in a given file.

● When the entire program is parsed into AST form,
there will be a branch of the tree that is created from
this line of code.

● The branch is considered a sub-tree that is rooted at
an AST node associated with the text RUN.

● The rest of the language statement is represented as
child nodes, grand-child nodes as so forth as needed
to reflect the structure of the statement.

● Each AST node is displayed as a circle. Blue are
real AST nodes that correspond with text in the
source code. Yellow are “artificial nodes” which only
exist to structure the tree.

● Parent/child relationships are represented with a
black line connecting the parent (left side node) to
the child (right side node).

Search

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Syntax-Aware Search

● If grep (regex searching) was fully aware of 4GL syntax it would still not be as good
as this.

● Write expressions or arbitrary complexity that match based on the full richness of the
AST.

● The TRPL engine does the tree walk, you just specify exactly what you want to match.
● The TRPL expression syntax has many features that make it easier to process AST

concepts, including the knowledge of the current AST node being visited.
● Code that cannot be implemented in a single expression can be put into a callable

TRPL function and accessed from expressions.
● All AST nodes and other data being accessed are actually Java objects. You can call

Java instance methods (no statics or generics at this time) on these objects and you
can pass those same objects to Java methods or to TRPL functions.

● TRPL has a wide range of advanced AST processing features that can be leveraged.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Condition Expression
● There is a text entry field for typing the boolean TRPL expression that specifies the search condition.

● The user can type directly into this field. As an alternative, pressing the arrow down button on the
right will show the entry field's drop down list. This list shows any previous expressions that ran
successfully. This is shared between all users and will be persisted across report server restarts.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Search Results
● The following is an example of how to search for all references to the hotel.guest.last-name field.

● After typing this expression, press the Run button to execute the search. The report server will dynamically
search the Code ASTs or the Schema ASTs for matches to this expression. All matches will be listed in the
results at the bottom of the screen.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Condition Editing
● The search condition field can be edited and enhanced in an iterative manner.
● Pressing Run will execute the search using the latest condition expression and

will load the results into the screen.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Errors
● If the expression is invalid (does not parse or pass validation) or if it results in a runtime

error, the user will be notified:

● Dismiss the error notification and edit the expression to resolve the error.
● It should be noted that at this time, the error reporting is a bit "raw", as the error message

displayed in the notification is taken directly from the TRPL engine when it parses, compiles, or
applies a search expression.

● These messages originally were designed for TRPL programmers and are not necessarily user
friendly.

● The message No matches found for the given criteria is not an error. It indicates that
your search expression was valid, but the condition it represented simply did not match any of the
ASTs searched.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Search: Field References

All references to guest.last-name:

type == prog.field_char and
getNoteString("schemaname").equals("hotel.guest.last-
name")

Assignments to guest.last-name:

type == prog.field_char and
getNoteString("schemaname").equals("hotel.guest.last-
name") and parent.type == prog.assign and childIndex == 0

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Search: Buffers That Hide Buffers

Version 1:

type == prog.define_buffer and
this.getChildAt(0).text.toLowerCase() ==
this.getChildAt(1).getChildAt(0).text.toLowerCase()

Version 2:

parent.type == prog.kw_for and parent.parent.type ==
prog.define_buffer and
text.equalsIgnoreCase(parent.prevSibling.text)

Version 3:

upPath("DEFINE_BUFFER/KW_FOR") and
text.equalsIgnoreCase(parent.prevSibling.text)

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Search: FIND and NO-ERROR

● All FIND statements (75 matches in 16 files):
type == prog.kw_find

● FIND statements without NO-ERROR (30 matches in
11 files)
type == prog.kw_find and not

this.descendant(2, prog.kw_no_error)

● FIND statements with NO-ERROR (45 matches in 12
files)
type == prog.kw_find and
downPath("RECORD_PHRASE/KW_NO_ERROR")

Custom Reports

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Report Definition User Interface

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Custom Reports

● Practice first with Custom Search, this is used to
define the Condition Expression.

● Refine output with Custom Reports
– Multiplex Expression to define “buckets”
– Specify “details” text using the Match Text Format or

Match Text Expression
– Organize by Category Tag and Report Title

● Persist the report definitions you find useful.
● Planned: Edit and Delete of custom reports.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Custom Reports Example

● Report Title:

FIND without NO-ERROR (by Buffer Name)
● Condition Expression:
type == prog.kw_find and parent.type == prog.statement and
not this.descendant(2, prog.kw_no_error)

● Multiplex Expression:
this.getImmediateChild(prog.record_phrase,
null).getChildAt(0).getAnnotation("schemaname")

● Category:

Database

Usage Tips

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Writing a Search Expression
● Look at the AST structure that corresponds to the code you are trying to

match.

● Write a code snippet and parse it, then view it in the source/AST
view.

● Use the predefined reports to find locations that already exist.

● Decide which node is the best situated. Usually this is about finding the
node that is most “centrally” located.

● All the context for the expression is written from that node’s
“perspective”.

● Use the token type first, to roughly match a set of possible nodes.

● Refine this to get an exact match by adding use of tree structure,
annotations and text.

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Look at the AST
● Tree visualization of DEFINE BUFFER

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

Don’t Fight the Tree!
● Let the structure of the AST solve the problem for you.
● TRPL will walk the tree for you.
● Your expression is being executed at each possible

location in the entire application.
● It is a “callback” model with the events determined by

the tree structure.
● The tree structure is the pure form of the language

syntax as represented in your code.
● Matching on the tree is matching on the syntax.
● If you are finding yourself doing something “unnatural”,

ask: how can the tree structure help me?

How to Get Started

Copyright © 2004 - 2020, Golden Code Development Corporation.
All Rights Reserved.

How to Get Started

● Download and install FWD.
● Download one of the sample template projects (there is one for ChUI

and one for GUI).
● Follow the “Getting Started” instructions to get the template project

installed and configured for your application code, including placing
your code and schemata into the template project.

● Run the ant report_server target.

● Start the report server.
● Access the server at port 9443 via a browser.
● Full details of this process and all documentation:

https://proj.goldencode.com/projects/p2j/wiki/Code_Analytics

	Title Page
	Agenda
	Background
	What is FWD?
	Explore
	Why Use FWD Analytics?
	Handling Flexibility and Scale
	Your Source Is Not Helping
	Non-Regular Code 1
	Non-Regular Code 2
	Ambiguous Code
	Syntax Flexibility Increases Cost
	Abstract Syntax Trees
	File -> Char -> Token -> Tree
	Scale Multiplies Issues
	TRee Processing Language
	TRPL Event Model
	AST Design for Transformation
	Report Generation
	Standard Reports
	Initial Reports Screen
	Summary Report 1
	Summary Report 2
	Summary Report Columns
	Details Report 1
	Details Report 2
	Support Levels
	Source/AST View
	AST Pane
	Search
	Syntax Aware Search
	Condition Expression
	Search Results
	Condition Editing
	Errors
	Search: Field References
	Search: Buffers That Hide Buffers
	Search: FIND and NO-ERROR
	Custom Reports
	Report Definition User Interface
	Using Custom Reports
	Custom Reports Example
	Usage Tips
	Writing a Search Expression
	Look at the AST
	Don't Fight the Tree
	Getting Started
	How to Get Started
	More Information

