
4GL Code Transformation
Modernize 4GL Code Using Fully Automated Transformation

Greg Shah
Golden Code Development

Tuesday October 8, 2019

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Agenda

● Background

● Handling Flexibility and Scale

● Transformation Process

● TRPL Primer

● Usage Tips

● How to Get Started

● Planned Improvements

Background

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Why Use FWD Transform?

● Enables fully automated transformation of Progress® 4GL code. Transforms an entire
application in one run.

● Powerful enough to handle the most extreme refactoring and transformation projects.

● Can be used to separate business logic from UI.

● Handles changes at scale, even on the largest of applications. Tested on applications well
over 10 million lines of code.

● Proven technology used to convert entire applications into fully compatible Java versions.

● By far, this is the most capable transformation toolset for Progress® 4GL code.

● Open source.

● No manual rewrite! Eliminates YEARS of wasted effort.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Handling Flexibility and Scale

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Your Source Is Not Helping

● Programmatic analysis of an application needs
to be aware of the 4GL language syntax.

● Your source code is text. That text is non-
regular and ambiguous.
– different text, same meaning (non-regular code)
– same text different meaning (ambiguous code)

● The 4GL suffers from this problem more than
most languages.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Non-Regular Code
Non-Regular Code Feature Description Different Text, Same Meaning

Case Insensitivity Source code may be entered with any case (all upper, all
lower, mixed). This frees the programmer from having to
think about or match specific case of keywords and
symbols (including user defined symbols).

Display
DISPLAY
display
dIsplay
disPlay

Keyword Abbreviations Some keywords (not all of them are documented) are
allowed to be arbitrarily abbreviated to some minimum
number of characters.

display
displa
displ
disp

Database Symbol Abbreviations 4GL source code will include direct references to database
table names and database field names. Both table and field
names are user defined symbols. The references can be
arbitrarily abbreviated to the smallest form of the symbol
that does not overlap with any other field. What is actually
allowed will depend on the context of where the name
references occur. Changes in surrounding code can make
some abbreviations possible that would not be valid in other
places of the same program.

Given two tables cust and customer, all of the
following refer to the customer table:
customer
custome
custom
custo

Given two fields (not necessarily in the same
table) name and number, all the following refer
to number:
number
numbe
numb
num
nu

If cust and customer both have name and
number, then all of these refer to
customer.number:
customer.number
custome.number
custom.num
custo.nu
...

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Non-Regular Code
Non-Regular Code Feature Description Different Text, Same Meaning

Optional Database Name Qualifiers Database tables and fields can appear in either a qualified
or unqualified form. What is actually allowed will depend on
the context of where the name references occur. Changes
in surrounding code can make some unqualified forms
possible that would not be valid in other places of the same
program.

Table:
mydb.customer
Customer

Field:
mydb.customer.number
customer.number
number

Ordering of Options/Clauses The ordering of keywords, options and clauses in most
statements is very flexible. This was probably an
unavoidable consequence of the keyword-heavy nature of
the 4GL syntax. Since there is a low ratio of punctuation to
keywords, there are relatively fewer natural cues in the
language to differentiate the grammatical structure of
“sentences” (statements). Without the flexible ordering, the
syntax would be harder to remember.

def var num format “999” init 14
extent 4.

def var num init 14 extent 4 format
“999”.

Synonyms Some punctuation and keywords can be used
interchangeably. Often these are undocumented
capabilities.

Most code blocks can have their header ended
with either a . (period) or a : (colon).

function help returns int ().
end.
function help returns int ():
end.

Keywords WAIT and WAIT-FOR are synonyms
even though WAIT-FOR cannot be abbreviated
(WAIT-FO is not valid):

WAIT go of my-widget.
WAIT-FOR go of my-widget.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Ambiguous Code
Ambiguous Code Feature Description Same Text, Different Meaning

Unreserved Keywords With roughly 2000 keywords in the language,
not all of them could be made into reserved
keywords (keywords whose text cannot be a
user-defined symbol). Over 400 keywords
are reserved, leaving the other 1600
(approximately) as unreserved. The
keywords can appear as source text for user-
defined names.

A user defined function encrypt() can be
named the same as the built-in function
encrypt() that uses an unreserved keyword:

some-var = encrypt(some-data).

Overloading Punctuation and Keywords Some punctuation and keywords are used for
multiple purposes, whose function is
differentiated by the context of the program.

The . (period or dot) is used for many
purposes: statement terminator, qualified
database name separator, date separator,
decimal point, package name separator,
included in a unquoted filename.

The : (colon) is similarly overloaded, including
many cases where it can be substituted for
the . (period).

The ERROR keyword can be used as part of
an ON ERROR clause, as a handle-based
attribute, as a key function, as a type of alert-
box, as a built-in function or as part of the
RETURN statement.

Many Namespaces The 4GL contains 19 different namespaces,
some of which are “flat” and some of which
are scoped to code blocks. The same user
defined symbols can appear in any and all of
these namespaces in the same program.

A variable can be named the same thing as a
stream which can be the same name as a
buffer, and so forth.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Syntax Flexibility Increases Cost

● The more flexible the language’s grammar, the larger
the set of possible valid constructs that can be written by
the programmer.

● This may lead to marginal time savings when creating
new programs.

● That increased flexibility magnifies the long term cost of
reading, maintenance, debugging, support and
refactoring.

● Greater flexibility in syntax results in greater long
term cost over the life cycle of an application.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Abstract Syntax Trees (ASTs)

● To enable proper analysis of code, we must transform
the text into a data structure that represents the purest
form of the code.

● ASTs represent the code’s language syntax without
syntactic sugar. The result is regular and
unambiguous.

● This allows the meaning of the code (its semantics)
to be separated from the messiness of the
representation (the highly varying syntax).

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Scale Multiplies Issues

● Spread that syntax flexibility across tens of thousands
of files and millions of lines of code.

● How do you find specific patterns?
● How do you even know if you have found all matches?
● Brute force is not enough.
● Scale makes hard problems impossible (or at least

impractical).
● Automation is the only practical solution.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

TRee Processing Language (TRPL)
● FWD provides tools to parse an entire application.

● Each source file and each schema file (.df) will be
represented as an AST.

● TRPL is the analysis and transformation toolset in
FWD which can operate on the entire set of ASTs
as a batch.

● When you process trees, it is commonly called a
tree walk.

● TRPL includes an engine that handles the tree
walking for programs written in the TRPL language.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

AST Designed for Transformation
● At parse time, there is a great deal of knowledge about the code. Encoding that

knowledge into the tree makes downstream work easier.

● Resolving data types of each expression component is very important. This allows
downstream code to calculate the type of each subexpression or expression in the
application.

● By tracking resources by scope and creating linkages between the references and the
definition, it becomes easier to work with these resources later.

● Structuring the tree is important. This can make it easier to walk the tree, match
patterns and transform.
– Multiple nodes can be rewritten as a single unambiguous node (e.g. KW_DEFINE

KW_PARAMETER can be written as DEFINE_PARAMETER).

– Artificial nodes can be inserted to group multiple related nodes.

● Calculated values and context-specific information are stored in the associated nodes
as annotations.

● The ASTs created by FWD were designed with these issues (and others) in mind.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Transformation Process

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

How It Works
● 3 phase process:

– Front End - Reads 4GL source code and handles the preprocessing,
lexing and parsing to generate the “pristine” ASTs.

– Transform - Executes your custom TRPL rules to analyze, refactor
and transform the ASTs.

– Back End - Anti-parses the transformed ASTs into 4GL source code.

● This is a non-interactive process that runs the same TRPL programs
against the entire application.

● This can take seconds/minutes for a small project or hours for a large
project.

● The resulting output (if done correctly) is syntactically correct 4GL
code.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Command Line
● The common way to run the transformation process (all 3 phases):

java -classpath p2j/build/lib/p2j.jar
 com.goldencode.p2j.convert.ProgressTransformDriver
 F2+TR+AP
 <transformation_ruleset>
 <4gl_program> ...

● The phases are controlled by the F2+TR+AP (front_end+transform+anti_parsing).

● You define the transformation ruleset to run (this is your TRPL program).

● Although the transformation ruleset filenames normally have the extension .xml, the
extension is not specified in the command line.

● Specifying Programs to Transform

– The default approach is to provide an explicit list of one or more files on the command line (see above).

– -F <whitelist> is an explicit whitelist of the files to process.

– -S <directory> <filespec> is a filespec form to specify wildcard matches.

– -X <directory> <filespec> <blacklist> is a filespec form combined with a blacklist to exclude
files.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Transformation Artifacts

● Given 4GL code in a file named program.p, the most
important artifacts created:
– program.p.cache contains the fuly preprocessed

4GL source code (all includes, conditional expansions
and arg/name references expanded)

– program.p.ast is the AST in XML format

– program.p.mod is the transformed 4GL source code
created

● The .mod file is comparable to the .cache file. It is a
fully preprocessed version of the code, but with all
changes applied.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Example 1 Eliminate Field
Abbreviations

● Use progress/eliminate_field_abbreviations as the TRPL rule set.
java -classpath p2j/build/lib/p2j.jar
 com.goldencode.p2j.convert.ProgressTransformDriver
 F2+TR+AP
 progress/eliminate_field_abbreviations
 <4gl_program>

● Matches on any static field reference (doesn’t matter if it is on a buffer,
table, temp-table or work-table).

● Examines the schemaname annotation (fully qualified and unabbreviated field
name) and compares field portion with field portion of the reference.

● Replaces the AST node’s text if it is abbreviated.

● The only tricky part of the TRPL rules is the part that handles the quirk
where “qualified field names can have some whitespace inside”. Such
nodes must have the original-text annotation set to the new value.

● This ruleset is generic and can be run on your projects without changes.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Example 1 Eliminate Field
Abbreviations

● The same technique can be used to implement other “in place” changes (token
types or other state for nodes).

● Does not change the structure of the AST.
● Does not rely upon fragile text matching or replacement behavior.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Example 2 Rewrite Function Params
● Use progress/rewrite_function_signature as the TRPL rule set.

java -classpath p2j/build/lib/p2j.jar
 com.goldencode.p2j.convert.ProgressTransformDriver
 F2+TR+AP
 progress/rewrite_function_signature
 <4gl_program>

● Matches all function calls to user-defined helper(integer, integer) that returns integer.

● This is not a generic ruleset. It can be used with the example 4GL programs helper_function_usage.p and
non_helper_function_usage.p (provided by Golden Code).

● The matching logic:
– FUNC_INT token type (function call that returns integer)

– text is case-insensitively equal to “helper”
– builtin annotation does not exist or is set to false

– Takes exactly 2 parameters, each subtree evaluates to integer type.

● When a match is found, it:
– Creates a new AST node (createProgressAst()) with text “check-it” and type of FUNC_INT.

– Inserts it into the tree in between the 2nd parameter and the matched “helper” FUNC_INT node.
– This shows structural change of the tree AND it is written to be independent of the complexity of the parameter sub-

expression.
– Inserts “shadow nodes” to handle hidden syntactic sugar of program (the LPARENS and RPARENS of the check-it()

function call.

● The only tricky part of the TRPL rules is the part that handles the shadow nodes using (insertInStream()).

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Example 2 Rewrite Function Params

● Does change the structure of the AST, this is very important to the result.
● The same technique can be used to insert other structural changes.
● Notice that there is no dependency on string processing for the result.
● ARBITRARILY complex parameter sub-expressions are handled as easily as the

single node case.
● The non_helper_function_usage.p case has virtually identical text but very

slight changes that cause the 2nd parameter to be a logical, which means no
changes are applied!

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Example 3 Insert Template
● Use progress/rewrite_function_signature_2 as the TRPL rule set.

java -classpath p2j/build/lib/p2j.jar
 com.goldencode.p2j.convert.ProgressTransformDriver
 F2+TR+AP
 progress/rewrite_function_signature_2
 <4gl_program>

● Matches all function calls to user-defined helper(integer, integer) that returns integer.

● This is not a generic ruleset. It can be used with the example 4GL programs helper_function_usage.p and
non_helper_function_usage.p (provided by Golden Code).

● The matching logic:
– FUNC_INT token type (function call that returns integer)

– text is case-insensitively equal to “helper”
– builtin annotation does not exist or is set to false

– Takes exactly 2 parameters, each subtree evaluates to integer type.

● When a match is found, it:
– Inserts a sub-tree created from a templ`ate named "audit_function_call_v1".
– Inserts it into the tree in between the existing 1st and 2nd parameters as a child of the matched “helper” FUNC_INT node.

– This shows structural change of the tree AND it is written to be independent of the complexity of the parameter sub-expression.
– Inserts “shadow nodes” to fixup the hidden syntactic sugar on either side of the inserted template (the COMMA after the new

parameter.

● If it inserts that code, it will ALSO (in “post” rules):
– Insert a FUNCTION IN SUPER declaration from a template.
– Modify the helper() function signature to add a new parameter using a template.``

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Example 3 Insert Template

● ARBITRARILY complex sub-trees can be inserted with a single line of code.
● Templates are XML “snippets” of an AST subtree, optionally including shadow

nodes.
● The same structure as the persisted AST is used.
● Templates support replacements syntax.

● Any string value in an XML node attribute will be searched for references like $
{ttype}.

● If present, the value will be replaced with the text provided in the graft/graftAt.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Limitations
● Does not (yet) emit changes into the original source files (includes

and non-preprocessed procedures or classes). The changes are
emitted in fully preprocessed form.
– It is OK to run the fully preprocessed versions.
– OR the user can apply the changes back as patches.

● Although the J-Mode (Progress® 4GL to Java) has rules available to
completely refactor and convert entire applicatons, the P-Mode
(Progress® 4GL to Progress® 4GL) currently does not have pre-
defined transformation rules.

● Whitespace handling is more effort than necessary (shadow node
processing).

● Line and column numbers are not automatically calculated for any
changes.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

TRPL Primer

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Introduction
● TRPL expression syntax largely the same as Java (as of

J2SE version 1.4)
● All symbols are case-sensitive
● Scalar expressions
● Method invocation using familiar Java syntax

(object.method())

● Type casting possible (using a modified syntax)
● Primitive values represented using Java wrapper types

(e.g., java.lang.Integer)

● https://proj.goldencode.com/projects/p2j/wiki/
Writing_TRPL_Expressions for more detail

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Features
● Auto-boxing

– Automatic conversion between primitive data types and Java wrapper types.

– E.g., int → java.lang.Integer, java.lang.Boolean → boolean

● Automatic Type Conversion
– Widening/narrowing numeric conversions and object reference data type

conversions.
– Allow narrowing conversion with care, precision loss can occur!

● Automatic Null Checking
– Object references in boolean expressions checked for null before being

dereferenced.
– Equality/range comparisons to null evaluate false; inequality to null evaluates true.
– Method parameters not null-checked prior to derefence.

● Property Notation
– Properties of an object exposed via a bean-like API (e.g., foo.getBar() and
foo.setBar(int)) are also exposed via shorthand, “property” notation.

– E.g., foo.bar > 10 (getter) and foo.bar = 55 (setter).

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Literals
● String (e.g., "Hello World"): auto-boxed to java.lang.String.

● Integral (e.g., 100, -9999): signed, base 10 numbers without a
decimal point, mapped Java primitive long, auto-boxed to
java.lang.Long.

● Hexadecimal (e.g., 0x01, 0xffff): base 16 numbers with a 0x prefix,
mapped to Java primitive long, auto-boxed to java.lang.Long.

● Floating point (e.g., 1.234, -56.7): signed, base 10 numbers with a
decimal point, mapped to Java primitive double, auto-boxed to
java.lang.Double.

● Boolean (e.g., true, false): logical constants mapped to Java
primitive boolean, auto-boxed to java.lang.Boolean.

● The null literal represents the null value. Typically used with the ==
or != operator to test whether opposite operand is or is not the null
value, respectively.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Object References
● Java objects are created in the following ways:

– as the return value of a method call on an existing object
– as the return value of a property accessor shorthand call on an

existing object
– as the return value of a user-defined function
– as an exported resource from a registered worker library
– as the return value of one of the special create* functions (built-in

functions in TRPL)
● stringBuilder = create("java.lang.StringBuilder", 64)
● myListOfStrings = createList("a", "b", "c", "one", "two", "three"));

– by de-referencing a variable (e.g., myVar);
– by auto-boxing a literal value;
– by auto-boxing a primitive value returned by a method call.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Method Invocation
● Java-like syntax for method invocation:

– <object reference>.<method name>([param1 [, …]])

– No implicit this reference. TRPL expressions do not run in the
context of an object instance.

– Static method invocation qualified by a class name does NOT
work (no implicit class name resolution).

● Given a variable string1 of type java.lang.String,
initialized to "Hello World", the following invocation is valid:
– string1.indexOf('He')

– would return 0 upon execution.

● Libraries of worker functions can be imported as global
methods.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Differences from Java
● No implicit this reference

● No direct static references
● Special typecast syntax
● No inline assignments
● No new keyword

● Arrays not supported
● String delimiters
● No char literals

● String literals can not be dereferenced
● Several operators not available
● Method call chaining is limited
● No import statement
● Generics not (currently) supported
● https://proj.goldencode.com/projects/p2j/wiki/

Writing_TRPL_Expressions#DifferencesLimitations-Compared-to-Java-Syntax for more
detail

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Operators
● Operators in this table are listed in order of their precedence, from those evaluated first to those evaluated last.
● Operators which have the same precedence are grouped together and are evaluated left to right.
● Parentheses (()) may be used to group operations which must be evaluated in a different order.

Precedence Symbol Type Operands Operation Performed

0 . Special Binary Method invocation

1 ! or not Logical Unary Logical complement

2 ~ Bitwise Unary Bitwise complement

3 - Arithmetic Unary Negation

4 * Arithmetic Binary Multiplication

4 / Arithmetic Binary Division

4 % Arithmetic Binary Modulo/Remainder

5 + Arithmetic Binary Addition

5 - Arithmetic Binary Subtraction

6 << Bitwise Binary Left shift

6 >> Bitwise Binary Right shift with sign extend

6 >>> Bitwise Binary Right shift with zero extend

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Operators (continued)

Precedence Symbol Type Operands Operation Performed

7 < Logical Binary Is less than

7 <= Logical Binary Is less than or equal to

7 > Logical Binary Is greater than

7 >= Logical Binary Is greater than or equal to

8 == Logical Binary Is equal to (primitive or object identity)

8 != Logical Binary Is not equal to (primitive or object identity)

9 & Bitwise Binary Bitwise AND

10 ^ Bitwise Binary Bitwise XOR (exclusive OR)

11 | Bitwise Binary Bitwise OR (inclusive OR)

12 && and Logical Binary Logical AND

13 || or Logical Binary Logical OR

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Token Types
● Each AST node has a token type. This is an integer value that identifies the meaning

of the node.
● In a TRPL expression, a human-readable token name is used instead of the integer

value. Different types of ASTs use different sets of token type to token name
mappings.

● FWD separates these by namespaces:
– prog - Progress token types (see ProgressParserTokenTypes). This namespace is available

when using the Code Analytics tool set and during code and schema conversion.

– java - Java token types (see JavaTokenTypes). This namespace is available during code and
schema conversion.

– xml - XML grammar token types (see XmlTokenTypes). This namespace is available during
code and schema conversion.

– data - Data model token types (see DataModelTokenTypes). This namespace is available
during schema conversion.

● Namespaces are used as qualifiers in TRPL expressions, so the correct token type
to name mapping is used. For example, prog.kw_for specifies the token type for
the Progress 4GL FOR statement; java.kw_for specifies the token type for the
Java for statement.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

AST Node Text
● Each AST node which was parsed from source code

or schema text, the text property of an AST node
usually represents the text from the input file.

● This might be the name of a variable or field, or a
keyword in the language.

● This text is usually left in its original form.
● Since it is not normalized into any regular form, the

node text is not always the most reliable property of
an AST on which to match a pattern.

● This text is the original, non-regular or ambiguous
features which we are trying to avoid.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Annotations
● Arbitrary information added to an AST node with a given label,

so it can be retrieved later.
● Added by the parser to store information not inherently

available from the tree structure or other standard properties of
an AST.

● Added by downstream TRPL programs to store
computed/derived information.

● Each annotation has a data type.
● Can be queried using getter methods in Aast interface.

● Extremely useful for pattern matching.
● Example: schemaname is a qualified, canonical name attached

to the AST node of every database table and field reference in
an application's business logic.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Structural Relationships
● The structure of an AST is key to its meaning.
● The tree structure represents the syntax of the

language in its most pure form.
● The relationships between nodes when combined

with token types, encode the meaning of
language constructs the AST represents.

● It is important to understand the structure of an
AST in order to write a TRPL expression which
describes the meaning of the underlying code
construct.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Structural Relationships
● Where the placeholder <ref> is used in an example expression, it represents an Aast

object reference.
● node - One point or location in the tree which represents a single token of code. Every

node has a token type and text (could be an empty string) associated with it. Every
node except the root of the tree has a single parent; each node has 0 or more direct
child nodes. Every node of type Aast has a unique numeric identifier associated with it.

● this - The "active" node; the node which is the focus of the current event during a tree
walk. This is an implicitly available object reference.

● root - The single ancestor of the entire tree. The root is the only node in a tree which
has no parent. Thus, a call to <ref>.getParent() at the root node will return null.
Retrieved with <ref>.getRoot() or <ref>.root.

● depth - The number of generations or levels a node is removed from the root node.
The depth of the root node is 0; the depth of its immediate child nodes is 1; the depth of
its grandchildren is 2; and so on. Depth is retrieved with <ref>.getDepth() or
<ref>.depth.

● leaf - A node which has no children. "Leaf-ness" can be tested with <ref>.isLeaf()
or <ref>.leaf or the helper function leaf().

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Structural Relationships
● ancestor - A node which has a direct lineage to another node and which has a lower depth.

There are several variants of the getAncestor() and ancestor methods and helper
functions to retrieve ancestor nodes or test whether an ancestor node with certain properties
exists, respectively.

● descendant - A node which has a direct lineage to another node and which has a higher
depth. There are several variants of the descendant() methods and helper functions to test
whether a descendant node with certain properties exists.

● parent - The direct ancestor of another node. A node can have 1 or 0 parents. Multiple nodes
may have the same parent. Retrieved with the method <ref>.getParent() or the
shorthand <ref>.parent, or simply the helper function parent.

● child - The direct descendant of another node. A node can have 0 or more children. The first
of a node's children can be retrieved (as a BaseAST object) with <ref>.getFirstChild()
or <ref>.firstChild. An arbitrary child node can be retrieved (as an Aast object) with
<ref>.getChildAt(N), where N is a zero-based index.

● sibling - A different child node with the same parent. Siblings are retrieved with calls to
<ref>.getPrevSibling() or <ref>.prevSibling (as an Aast object) or with
<ref>.getNextSibling() or <ref>.nextSibling (as a BaseAST object), relative to the
active node.

● The authoritative reference for the Progress ASTs created by the FWD parser is the parser's
grammar definition, located in the source code at src/com/goldencode/p2j/uast/progress.g.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Editing Tools
● ProgressPatternWorker

– createProgressAst() - Creates a new AST node which is completely disconnected
from the tree. Set its state and then insert it using Aast.graft() or Aast.graftAt().

– createShadow() - Creates a new shadow node which is completely disconnected from
the tree. Set its state and then insert it using insertInStream().

– insertInStream() - Add shadow nodes (hidden nodes like whitespace and other
punctuation which is syntactic sugar) maintaining the proper left/right linkages so that the
output will be emitted with proper formatting. Also allows AST nodes to be inserted
relative to the stream while maintaining the shadow node linkages.

– removeFromStream() - Remove shadow nodes or AST nodes from their position in the
left/right output stream.

● AnnotatedAst (it is the parent class of every node which is a ProgressAst
and implements Aast)
– remove() - Disconnect the subtree rooted at a given node from the main tree. It can be

grafted back somewhere else, or discarded entirely.
– graft() and graftAt() - Attach the sub-tree rooted the given node into the target tree,

optionally at a specific child index position. Fixup any parent/child linkages and set node
ids to match the tree.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Editing Tools
● AnnotatedAst (continued)

– duplicate() and duplicateFresh() - Duplicate entire sub-trees rooted
at a given node. These are disconnected from the given tree and can be
grafted in.

– Moving can be achieved by remove() followed by graft() or graftAt().

● ExpressionConversionWorker
– expressionType() - Calculates the type of a sub-expression as

represented by a specific AST node.

● TemplateWorker
– load() - Load pre-defined sub-tree snippets of ASTs from an XML template

file.

– graft() and graftAt()- Attach a named template to the given tree
(optionally at a specified index position) with a set of text replacements
applied before grafting.

– This is a useful way to build and attach very complex sub-trees with very little
code.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Usage Tips

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Writing TRPL Expressions
● Look at the AST structure that corresponds to the code you are trying to

match.

● Write a code snippet and parse it, then view it.

● Use the predefined reports in FWD Analytics to find locations that
already exist and look at the Source/AST View.

● Decide which node is the best situated. Usually this is about finding the
node that is most “centrally” located.

● All the context for the expression is written from that node’s
“perspective”.

● Use the token type first, to roughly match a set of possible nodes.

● Refine this to get an exact match by adding use of tree structure,
annotations and text.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Copy or This?
● TRPL is designed for a highly pipelined approach, where multiple

(maybe hundreds of) rulesets are processed in sequential order.

● The output of one ruleset (an optionally modified tree) is the input to the
next.

● To facilitate this, the input tree is completely duplicated at the time each
ruleset runs. The ruleset has access to both the input and output trees.

● In each ruleset, there are 2 representations of the current node in the
tree:

● this – A reference to the node in the input tree.

● copy – A reference to the duplicate of this but in the output tree.

● At the beginning, these trees are identical. This means that this and
copy are often interchangeable.

● The TRPL engine walks the tree using this and edits should ONLY
EVER be made to copy. NEVER EDIT this.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Look at the AST
● Tree visualization of DEFINE BUFFER

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Don’t Fight the Tree!
● Let the structure of the AST solve the problem for you.
● TRPL will walk the tree for you.
● Your expression is being executed at each possible

location in the entire application.
● It is a “callback” model with the events determined by

the tree structure.
● The tree structure is the pure form of the language

syntax as represented in your code.
● Matching on the tree is matching on the syntax.
● If you are finding yourself doing something “unnatural”,

ask: how can the tree structure help me?

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

How to Get Started

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

How to Get Started

● Download and install FWD.
● Download one of the sample template projects (there is one for ChUI and one for GUI).
● Follow the “Getting Started” instructions to get the template project installed and configured

for your application code, including placing your code and schemata into the template
project.

● Run the ProgressTransformDriver in F2 mode to test the parsing of the project.
Please refer to https://proj.goldencode.com/projects/p2j/wiki/Conversion_Handbook
chapters 6 through 12 for details on how to work through parsing issues. You MUST have
your 4GL code parsing properly before you can try transformation rules.

● Write your transformation rules using the examples in the FWD distribution (see
rules/progress/*) and the documentation in
https://proj.goldencode.com/projects/p2j/wiki/Understanding_ASTs_and_TRPL.

● From there you can test your rules and iterate rapidly until you reach your objectives.
● Register an account in Redmine (https://proj.goldencode.com/account/register) and post in

the Conversion forum (https://proj.goldencode.com/projects/p2j/boards/2) for help.

https://proj.goldencode.com/projects/p2j/wiki/Conversion_Handbook
https://proj.goldencode.com/projects/p2j/wiki/Understanding_ASTs_and_TRPL
https://proj.goldencode.com/account/register

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Planned Improvements

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Planned Improvements - P-Mode
● Phase 2

– Need to automatically calculate the line/column numbers of changes to the tree. Some of our processing depends upon this
to work. For example, artificial nodes don't get anti-parsed AND some processing depends on calculating which nodes are
left/right of each other so the relative line numbers must be consistent.

– Provide a default formatting/whitespace output for nodes that were created via program (TRPL rules) instead of being read
from the input source code. In the current parser, in order to have formatted output, hidden nodes with the whitespace would
have to be inserted in between nodes and linked properly. The core issue here is that simple heuristics may not be enough
since there is so much different syntax in the language.

– Add shadow node support to the TemplateWorker for loading and grafting. This will also require changes in
XmlFilePlugin.

– Add more tools (in ProgressPatternWorker) for insert/delete/move of nodes and shadow nodes (keeping all the shadow
node linkages intact).

– Provide tools for the TRPL user to control/edit/specify the formatting, without hard coding the whitespace as hidden nodes.

– Create a tool to help apply changes to the original files by writing the changes as patches that could be applied via diff. In
combination with the current output, this could make it unnecessary to implement phase 3.

● Phase 3

– Implement rules to separate business logic from user interface. This will include the creation of APIs for the business logic.

– Implement an option to flow edits back to the original source files (even include files). This is not guaranteed to work in all
cases since changes may stretch across the boundaries of preprocessor expansions, conditional preprocessor directives and
nested includes. However, it is also possible that many or most changes could be calculated safely.

Copyright © 2004 - 2019, Golden Code Development Corporation.
All Rights Reserved.

Planned Improvements - TRPL

● Move our existing transformation rules that calculate important
properties to an early enough location that it can be integrated into
reporting. This would include things like buffer scoping, frame
scoping, index selection, transaction/block properties and more.

● Duplicate Code Identification. We can identify arbitrary code matches
across the entire application using a bottom-up fingerprinting
approach for each unique sub-tree in the application. By using fuzzy
logic, we can match code that is the same whether it was cut and
pasted or just independently coded the same way. Using these
fingerprints we can turn duplicated code into common code.

● Improved TRPL syntax and structure, source level debugging. This
will likely be done by shifting to a Scala implementation.

	Title Page
	Agenda
	Background
	What is FWD?
	Explore
	Why Use FWD Analytics?
	Handling Flexibility and Scale
	Your Source Is Not Helping
	Non-Regular Code 1
	Non-Regular Code 2
	Ambiguous Code
	Syntax Flexibility Increases Cost
	Abstract Syntax Trees
	File -> Char -> Token -> Tree
	Scale Multiplies Issues
	TRee Processing Language
	TRPL Event Model
	AST Design for Transformation
	Transformation Process
	Flow Chart
	How It Works
	Command Line
	Transformation Artifacts
	Example 1 Eliminate Field Abbreviations Idea
	Example 1 Eliminate Field Abbreviations Diff
	Example 2 Rewrite Function Params Idea
	Example 2 Rewrite Function Params Diff
	Example 3 Insert Template Idea
	Example 3 Insert Template Diff
	Limitations
	TRPL Primer
	TRPL Introduction
	Features
	Literals
	Object References
	Method Invocation
	Differences from Java 1
	Operators 1
	Operators 2
	Token Types
	AST Node Text
	Annotations
	Structural Relationships 1
	Structural Relationships 2
	Structural Relationships 3
	Editing Tools 1
	Editing Tools 2
	Usage Tips
	Writing TRPL Expressions
	Copy or This
	Look at the AST
	Don't Fight the Tree
	Get Started
	How to Get Started
	Plans
	Planned Improvements P-Mode
	Planned Improvements TRPL
	More Information

