
  

Running an ABL GUI as an 
HTML5 Web Application Without 

a Rewrite

Greg Shah, CEO
Golden Code Development

Friday November 17, 2017
www.beyondabl.com

https://www.beyondabl.com/


  

Agenda

● Background

● UI Paradigms Over Time

● Modernization Alternatives

– Rewrite

– .NET Facelift

– Enhanced 4GL

● Running 4GL GUI as Web

● Javascript Integration

● Enhanced 4GL Capabilities

● Status



  

What is FWD?

● Open Source implementation of the 
4GL (not OpenEdge)

● Entire ABL applications

– code, schemata, data

– projects of any size

– any level of complexity

● Fully automated, non-interactive

● Drop-in replacement (OE compatible)

● Leverages existing 4GL code 
investment (including GUI)

● Provides evolutionary path forward



  

Who Is Golden Code?

The team of engineers and computer 
scientists that created the FWD 
technology.

We use FWD to help our clients solve the toughest ABL 
refactoring, transformation, and modernization problems.

www.goldencode.com

https://www.goldencode.com/


  



  

Strategic Assessment

● Web/Mobile is the strategic UI paradigm

● The shift away from desktop applications occurred between 2007 and 2011

● In 2017, “green field” business software is NOT written using Windows GUI 
APIs, including Windows Forms (i.e. OpenEdge GUI for .NET)

● Windows Forms is not strategic, even for Microsoft;  placed in maintenance 
mode in 2014

● OpenEdge GUI for .NET is an evolutionary dead end

● Moving to web and mobile should be a high priority for all business software

● Disparity between 1990’s style WIN32 GUI and modern UI paradigms driving 
UI Modernization



  

UI Modernization Approaches

● Rewrite
● .NET Facelift
● Enhanced 4GL



  

Rewrite

● Phase 1: Refactor 
– Traditional 4GL code:  tight coupling of business logic, data, and user interface

– UI code must be separated from business logic and data access

– Often done as an API that exposes business services

– Another common approach:  expose business entities as data objects

– Leave business logic and data access in 4GL, eliminate UI processing in that code

● Phase 2: Rewrite
– Write new, modern UI as non-4GL front end

– Use native web (and sometimes mobile) technologies

– From non-4GL language, consume API / business entities from OpenEdge back end

● Progress’ preferred approach is JSDO and Kendo UI Builder/Nativescript

● Solutions exist which are designed to write front end UIs, using OpenEdge as back end



  

The Long Tail

● Each dialog/window/ADM[2] tab is considered a “screen”

● Non-trivial applications have surprisingly large number of screens;  empirical experience suggests 
at least 500 screens per 1MLOC of code*

● Most (~90%) of application’s high value features done with ~10% of screens

● On average, cost and effort to rewrite a low value screen is same as to rewrite a high value screen

● Return on investment for ~90% of screens never achieved

* FWD Code Analytics can be used to get an exact number, no matter how large the project.



  

Per Screen Work

● Front end tools help, but UI code is tricky and non-trivial;  time-consuming to 
get replacement right

● Refactoring of old business logic into Business Entities a big part of the 
“hidden work”

– Simplest case screen maybe 1 to 2 days

– Complex, more fragile screen maybe 5 to 10 days

● UI side (creating a new screen or screens to replace the original)

– Simple screen maybe 2 to 5 days

– Complex screen perhaps 10 days

● Per screen best case:  3 to 7 person days

● Per screen worst case:  15 to 20 person days



  

Person Years Per 1MLOC

● Variations in developer productivity

– other work, interruptions, meetings, unexpected problems

– best case not often achieved

● With 48 working weeks and a 40 hour work week:  maximum yearly 
productivity is 240 days

● Assume 20% of developer time spent with normal overhead

– probably optimistic

– would be remarkable to achieve 192 full person days of real work per year

● Assume average screen complexity is medium (10 days of work per screen)

● 500 screens * 10 days per screen = 5,000 person days (26 person years) per 
1MLOC of code



  

Rewrite Odds of Success?

● For many non-trivial applications, effort to rewrite UI so large, it is too much to 
reasonably get to end of job

● Most of the work is for low value screens

● Refactoring tricky;  carries a high likelihood of regressions and breakage

– adding proper specs and testing into the development effort multiplies the 
effort further

● Effort spent on rewrite is not spent on other functional tasks

– opportunity cost of dedicating this scale of resources;  and/or

– real cost of adding more resources

● How many organizations do you know that have finished this rewrite?

– the classic “never ending project”



  

.NET Facelift

● Pressured to modernize UI, but finding that rewrite option impractical, some 
look to .NET as a short term solution

● Less work than a full rewrite, though not trivial (months, not days)

● Not an evolutionary path to web/mobile

– fat client gets fatter

● Now harder to move to web/mobile

– significant dependency encoded to non-strategic Windows .NET UI

● Some organizations desperate to show some UI improvement, so they go 
down this path, not realizing that there is a better option



  

ChUI to GUI Transition

● 4GL Character UI code was largely “future proofed”

● Applications could transition without completely:

– refactoring business logic;

– rewriting UI

● Transition was possible with only modest edits to existing ChUI code

● UI could be brought over to new UI paradigm and then over time, GUI 
enhancements and GUI-specific capabilities were leveraged

● Allowed a natural evolution while maintaining existing investment in UI and 
business logic

● If Progress had not taken this approach, it might not exist today



  

GUI to Web Transition

● Last significant investment in the core 4GL UI capabilities was 1998 
(Progress 4GL v9 stabilized GUI code, added ADM2)

● In 2017, 4GL GUI may best be described as deprecated

● Progress recommends using non-4GL technology for UI modernization

● There is no future proofing of GUI code

– no evolution path

– existing investment is devalued

● Recommended rewrite path is very hard to achieve and involves large, 
unnecessary costs



  

Extending 4GL GUI to the Web

● What if existing 4GL GUI could run in the web, without a rewrite?

● What if 4GL GUI features were enhanced to add new capabilities, new functionality, a 
modern UI approach?

– some improvements could be implemented without code edits

– other improvements require some new code (or changing existing code to use new 
features)

● Clean, evolutionary path that starts with existing GUI investment and allows developers 
to achieve fully modern UI without a rewrite

● Developers focus on high value screens;  modernization effort is additive/incremental  

● Simultaneously avoids long tail problem while future proofing existing investment

● Would require re-imagining/re-implementing core 4GL UI capabilities, from the bottom 
up

● This is exactly what many 4GL developers would have wanted Progress to do

FWD is this re-imagined, enhanced 4GL.



  



  



  



  



  



  



  



  



  



  



  



  

Other Benefits

● Portability (platform and database)
● Easy integration with any Java technology
● 4GL syntax enhancements, e.g.:

– CREATE TIMER (instead of PSTimer OCX)

– CREATE REPORT (JasperReports integration)

– CREATE SMTP-EMAIL

– Multithreading (coming soon)

– ...

● Cloud-friendly



  

Status

● Everything demonstrated today available now
● Themes support available today
● Enhanced browse available by the end of 2017
● Other widget improvements starting early 2018

– new widgets

– dynamic layout

– etc…



  

Open Source

● Solve your own problems
● See how it all works
● Collaborate / contribute
● Available now and forever
● Affero GPL (reciprocal)
● Dual licensing available



  


	Title Page
	Agenda
	What is FWD?
	Who is Golden Code?
	UI Paradigm Evolution
	Strategic Assessment
	UI Modernization Approaches
	Rewrite
	The Long Tail
	Per Screen Work
	Person Years Per 1MLOC
	Rewrite Odds of Success?
	.NET Facelift
	ChUI to GUI Transition
	GUI to Web Transition
	Extending 4GL GUI to the Web
	Custom Web Application
	FWD Embedded Web Client
	Javascript "Up-Calls"
	FWD Runtime Architecture
	FWD Client Runtime Architecture
	Javascript SUBSCRIBE "roomUtilization"
	Javascript PUBLISH "capacityZoom"
	Javascript PUBLISH "roomTypePick"
	Custom Themes
	Better Widgets
	Dynamic Layout
	Other Benefits
	Status
	Open Source
	More Information

