FWD

Running an ABL GUI as an
HTML5 Web Application Without
a Rewrite

Greg Shah, CEO Friday November 17, 2017
Golden Code Development www.beyondabl.com

https://www.beyondabl.com/

Agenda

* Background Running 4GL GUI as Web
Javascript Integration
Enhanced 4GL Capabilities

Status

o Ul Paradigms Over Time

 Modernization Alternatives

- Rewrite
- .NET Facelift
- Enhanced 4GL

What is FWD?

 Open Source implementation of the
4GL (not OpenEdge)

« Entire ABL applications
- code, schemata, data
- projects of any size

- any level of complexity

» Fully automated, non-interactive

* Drop-in replacement (OE compatible)

open source progress-compatible ennanced agi © Le€verages existing 4GL code
investment (including GUI)

* Provides evolutionary path forward

Who Is Golden Code?

The team of engineers and computer
scientists that created the FWD
technology.

We use FWD to help our clients solve the toughest ABL
refactoring, transformation, and modernization problems.

www.goldencode.com

https://www.goldencode.com/

ul Par'adiam Evolution

Strategic Assessment

Web/Mobile is the strategic Ul paradigm
The shift away from desktop applications occurred between 2007 and 2011

In 2017, “green field” business software is NOT written using Windows GUI
APIs, including Windows Forms (i.e. OpenEdge GUI for .NET)

Windows Forms is not strategic, even for Microsoft; placed in maintenance
mode in 2014

OpenEdge GUI for .NET is an evolutionary dead end
Moving to web and mobile should be a high priority for all business software

Disparity between 1990’s style WIN32 GUI and modern Ul paradigms driving
Ul Modernization

Ul Modernization Approaches

e Rewrite
« NET Facelift
« Enhanced 4GL

Rewrite

Phase 1. Refactor

- Traditional 4GL code: tight coupling of business logic, data, and user interface

- Ul code must be separated from business logic and data access

- Often done as an API that exposes business services

- Another common approach: expose business entities as data objects

- Leave business logic and data access in 4GL, eliminate Ul processing in that code

Phase 2: Rewrite

- Write new, modern Ul as non-4GL front end

- Use native web (and sometimes mobile) technologies

- From non-4GL language, consume API / business entities from OpenEdge back end

Progress’ preferred approach is JISDO and Kendo Ul Builder/Nativescript
Solutions exist which are designed to write front end Uls, using OpenEdge as back end

The Long Tail

More
UGage

Less

Screens

Each dialog/window/ADM|[2] tab is considered a “screen”

Non-trivial applications have surprisingly large number of screens; empirical experience suggests
at least 500 screens per 1IMLOC of code*

Most (~90%) of application’s high value features done with ~10% of screens
On average, cost and effort to rewrite a low value screen is same as to rewrite a high value screen

Return on investment for ~90% of screens never achieved

* FWD Code Analytics can be used to get an exact number, no matter how large the project.

Per Screen Work

Front end tools help, but Ul code is tricky and non-trivial; time-consuming to
get replacement right

Refactoring of old business logic into Business Entities a big part of the
“hidden work”

- Simplest case screen maybe 1 to 2 days

- Complex, more fragile screen maybe 5 to 10 days

Ul side (creating a new screen or screens to replace the original)
- Simple screen maybe 2 to 5 days

- Complex screen perhaps 10 days
Per screen best case: 3 to 7 person days

Per screen worst case: 15 to 20 person days

Person Years Per 1IMLOC

Variations in developer productivity
- other work, interruptions, meetings, unexpected problems

- best case not often achieved

With 48 working weeks and a 40 hour work week: maximum yearly
productivity is 240 days

Assume 20% of developer time spent with normal overhead

— probably optimistic

- would be remarkable to achieve 192 full person days of real work per year
Assume average screen complexity is medium (10 days of work per screen)

500 screens * 10 days per screen = 5,000 person days (26 person years) per
1MLOC of code

Rewrite Odds of Success?

For many non-trivial applications, effort to rewrite Ul so large, it is too much to
reasonably get to end of job

Most of the work is for low value screens

Refactoring tricky; carries a high likelihood of regressions and breakage

- adding proper specs and testing into the development effort multiplies the
effort further

Effort spent on rewrite is not spent on other functional tasks
— opportunity cost of dedicating this scale of resources; and/or

- real cost of adding more resources

How many organizations do you know that have finished this rewrite?

- the classic “never ending project”

.NET Facelift

Pressured to modernize Ul, but finding that rewrite option impractical, some
look to .NET as a short term solution

Less work than a full rewrite, though not trivial (months, not days)

Not an evolutionary path to web/mobile
- fat client gets fatter
Now harder to move to web/mobile

- significant dependency encoded to non-strategic Windows .NET Ul

Some organizations desperate to show some Ul improvement, so they go
down this path, not realizing that there is a better option

ChUI to GUI Transition

4GL Character Ul code was largely “future proofed”

Applications could transition without completely:
- refactoring business logic;
- rewriting Ul
Transition was possible with only modest edits to existing ChUI code

Ul could be brought over to new Ul paradigm and then over time, GUI
enhancements and GUI-specific capabilities were leveraged

Allowed a natural evolution while maintaining existing investment in Ul and
business logic

If Progress had not taken this approach, it might not exist today

GUI to Web Transition

Last significant investment in the core 4GL Ul capabilities was 1998
(Progress 4GL v9 stabilized GUI code, added ADM2)

In 2017, 4GL GUI may best be described as deprecated
Progress recommends using non-4GL technology for Ul modernization

There is no future proofing of GUI code
- no evolution path

— existing investment is devalued

Recommended rewrite path is very hard to achieve and involves large,
unnecessary costs

Extending 4GL GUI to the Web

What if existing 4GL GUI could run in the web, without a rewrite?

What if 4GL GUI features were enhanced to add new capabilities, new functionality, a
modern Ul approach?

- some improvements could be implemented without code edits

- other improvements require some new code (or changing existing code to use new
features)

Clean, evolutionary path that starts with existing GUI investment and allows developers
to achieve fully modern Ul without a rewrite

Developers focus on high value screens; modernization effort is additive/incremental
Simultaneously avoids long tail problem while future proofing existing investment

Would require re-imagining/re-implementing core 4GL Ul capabilities, from the bottom
up

This is exactly what many 4GL developers would have wanted Progress to do

FWD is this re-imagined, enhanced 4GL.

Custom Web Application

s Erbedded web0 ®

“ L] we | Eripreealbaa

Twifrontdesk

Bl g BIL m
S

|||||

& 23l JOLT Dodder: Code Depsylopregn Cop,

* HTMLE .;’C-SSx"Javae;¢riP+
- Sir'lc_:]le page ﬂPPHC-GHDI"i (ho reloads)

- davaacrip-f controls bound to ABL
dota

FWD client as separate document
in an IFrame frec;-mﬂﬂmm', visual

element)

Main (c:onmlﬂir'u_s]) document and
IFrame document have diFfFerent
"or"ic_:jihez"

Cross-Document Meaeaﬂina alows
commuhnication between the two

FWD Embedded Web Client

HTMLE /Css/Jda vacsc:r‘ip+

Converted ABL code runs in
the Java apphcaﬁoﬂ server

ABL Ul renders in an IFrame

Noh-modal windows ‘chromeless

}
T
Room Type: | Al rooms v Ruoem Numbai Joom Type Flioos

Sheckin Dote:| = 2=/17_| | 201 Dotle 2 Dialoaa are modal with a Ghadiﬂﬂ
cpeckouoms 121217 | |8 ::wer"lay
Days: 3 . .
APl For control of screens l::y
Find Avalabla R

containin E web P‘ﬂ‘fle fopen close,

hide, surtace..

davmec,rip-f appserver API

vaa;arip’r PUBLISH/sUBSCRIBE
in’regrahoh with converted ABL

Javascript “uP-C,allcs"

Create a custom web Ul

Use any browser-side Java-::a:riﬁ
+c=cﬂiﬂﬂ. controls or Frameworks
Direct calls from \Javaf.-;::rlp'f
code to converted ABL

Call external procedures, optionally
ufsir‘tc_:j perc:-ir;-feﬂ’r prcc:edur“eg
Internal Proc,-edur‘ﬁ:f_a and Functions
can be invoked using a persistent
F?'I“'DC..E'dU't‘"E handle

® Data returned as JSON

- Eacﬁy to use data I:Jind'lr'lcj

techniques (d3 is shown here)

i Brabedded Weh e =

£ 8 Seouw i lcakos e i

fwifrontdesk

A Gearm W Rasrariera @Rea Seecma elsgaa

Converted
ABL IFrame =

SES
242000
L0 .
2100000
ELAUN]
E00O0

| DR
T % B pLE
Lamury Suite 1 k-] i Do

[& H004- 3017 Gobdien Coxe Dwsbaparani Corp

FWD Runtime Architecture

DAP Protocol
over sSsb

e

Relational Daotabase

e @ SQL Server |2

DBC (Po-.-.hjresal_)

Secure

Websocket

FWD Client Runtime Architecture Acf,iif jj::e;-SL

Process Lmnch‘rlﬂ

Shell Access
MEMPTR
Native API Calls

Sockets

Client Platform

Embedded Web Delegate
Server (JeHy)

0S Resources

y and APls
ASC Websocket

to Webk Client
Bottom Half

Terminal

davar;c:rip+ SUBSCRIBE

PWD Server (runs corwverted aal)
staywtrg.p
TALGGER PROCEDURE FOR Write OF

rsrvwtrg.p
TRIGGER FROCEDURE FOR Write OF

publizh “rooslti

rsrvdtrg.p

TRIGGER PROCEDURE FOR Delete OF ressecest icn

publish

"'roomutilization'

ehotel.js (Javascript code)

by converted ABL code

<= pnd &% utilByTypeEndDate == start

utilByTypeStartDate, utilByTypeEndDate)

i1 |_.|_:l::||.1 b Ll

arge in s et Hoe Hedel O

Javascript PUBLISH "c.apac.i-l-yz_oom“

Thrab- - Kasg Red
T
Ly

Java Up Call to ﬁs*‘ data

ehotel.js (Javascript code) to refrech aster plot

Jave Up Call fo qet data to
refresh Eoom Utiization tabie

FWD server (rurs corverted 4GL)

avail-rooms-frame.w

SUBSCAIBE TO “capacityZoom™ ANYWHERE.

Java Up Call o netify subserbers i avaiLability (IHPUT o8
that a date ronge on the Hotel Copacity e THRUT |
l*n!'.m:v.irll'lc:up| wias selested

Javascript PUBLISH “r‘oomTypePic:.K“

FwWD server (runs converted 4GL)

| snge
Earnghn - Safuid i] B ESli] Be0 G5
Dt

avail-rooms-frame.w

Drbie - S i
Dreubls - King Bed

Tan

Lazury Tulte

= rt]l THEN

y [INPUT d1, IWPUT 42).

Custom Themes

T] i owe Classic

Acom Type: Sl - Superir Upn || : :
o TI 3w s o drawing, at the pixel level
Mon Tim Wed Tha Fii Sl Sun _
Crackou Do [G207 gal| | [EEEE R Control over colors and Fonts
Doy 7 | 4 5 [7 2}]
o oz s s i I
Bl s 0 : — 1 i 15:1 L Each widget type has its own
EMM + 2000 Do | ’1‘ 3" Ef ” “ 3‘ ’: drawnnﬂ routines, override at
[}]
- “« ¢ I > o» a ver ranular level
Checkin | Cancel | Cace_| Y ﬂ
P1uaﬂable Java theme classes
: Subclass the built-in themes and
0 Windows 10 de +h + J
e i o | overtice The parts yeu nee
| B Typs Sige - Supsio oae | @ <\ ST == your own From scratch
| Check-n Date: (0071317 | Vi '[Mon Tue Wed Thu Fi Sa S _ .
Chack o Dave [302077 | |8 — B Choose the theme at runtime
Daye 7 1w on o121 15 . = . ,
focm Pre:§ 20,00 T T o B g HE‘ NEIE] DiFferent FWD client sessions
Services Toksk $0.00 H X ® H oW M M
TotalPiice: §420.00 Delete [z a]l 45|87 Can run dlf—f—erer‘rf themes
Wt TIndsp FR

(Gt | | Coee I Cucs

Better Wiclge+c3

Widget Managed Header Formatting Widget-Managed
Column Sorting and Control Caolumn Filtering nars of (e |[rapes B[e | sy v [comrme v A v oo v v

- Gmsoar - Mg -|mm-w \DmwoiDm - Oeer -
frdrdfl |bam RS
ddrddd | s |
Ardrirdd | e Pr—
| e | e nowiee |
WA | maon TR
AR |brown s |

|

| edrdrad e Pre—
| dedreri |me AL
Ardrirded |res AR

LY RY B LRY RS

""lﬂ;-' LIERE] -.!!-H

L] et Direct Export to
Cell-Level Hyperlinkin
¥P 9 Pagination Controls PDF/CSV/Excel

L]
i

®
1)
LT
kLl

i

e 20T mda

r 2R EEw e

1
L
E
2

11
%
1
b

op tichally ena bled at

Dynamic. l_ayou+

Encode a layout r;-l-r"a-hew at the window and Frame level in 4GL code
t’e.a_,. LAYOUT EQUAL-COLUMNS or LAYOUT CARD)

Dynamic. layout and resizing oF a window (and its contained Frames) in
response to device media queries (the screen size/resclution determines
how the 'Ir:T-I‘?fGU'l' renders)

In this E:y.:.amp'le_. a multi-column]GY51J+ oh a wider screen wil r'|a+ur.::ﬂ'|~l,r
render in a single column on a phone screen - same 4Gl code, diFFerent
runtime result

Not yet available (+his work is in process now)

Window (Desktop/Tablet)

|
|
|
|
|
|
|
|
I
|
|
|
Button

:
g

:

Other Benefits

Portability (platform and database)
Easy integration with any Java technology

4GL syntax enhancements, e.g.:

- CREATE TIMER (instead of PSTimer OCX)

- CREATE REPORT (JasperReports integration)
- CREATE SMTP-EMAIL

- Multithreading (coming soon)

Cloud-friendly

Status

Everything demonstrated today available now
Themes support available today
Enhanced browse available by the end of 2017

Other widget improvements starting early 2018
- new widgets

- dynamic layout

- etc...

Open Source

» Solve your own problems
* See how it all works

* Collaborate / contribute

* Available now and forever
» Affero GPL (reciprocal)

e Dual licensing available

@ \www.beyondabl.com
) facebook.com/beyondabl

® twitter.com/beyondabl

@ plus.google.com/+beyondabl

@ linkedin.com/company/fwd-project

youtube.com/channel/
UCk3pga7EKXAQVOV_CiYORT7g

	Title Page
	Agenda
	What is FWD?
	Who is Golden Code?
	UI Paradigm Evolution
	Strategic Assessment
	UI Modernization Approaches
	Rewrite
	The Long Tail
	Per Screen Work
	Person Years Per 1MLOC
	Rewrite Odds of Success?
	.NET Facelift
	ChUI to GUI Transition
	GUI to Web Transition
	Extending 4GL GUI to the Web
	Custom Web Application
	FWD Embedded Web Client
	Javascript "Up-Calls"
	FWD Runtime Architecture
	FWD Client Runtime Architecture
	Javascript SUBSCRIBE "roomUtilization"
	Javascript PUBLISH "capacityZoom"
	Javascript PUBLISH "roomTypePick"
	Custom Themes
	Better Widgets
	Dynamic Layout
	Other Benefits
	Status
	Open Source
	More Information

