
Base Language - Bug #2288

incorrect conversion and results for unknown value comparisons

04/18/2014 12:30 AM - Eric Faulhaber

Status: Closed Start date:

Priority: High Due date:

Assignee: Eric Faulhaber % Done: 100%

Category: Estimated time: 0.00 hour

Target version: Cleanup and Stablization for Server

Features

billable: No case_num:

vendor_id: GCD

Description

Related issues:

Related to Database - Bug #18: issues with ne/equal and true/false conversion... WIP 10/23/2012

History

#1 - 04/18/2014 12:57 AM - Eric Faulhaber

Consider the following 4GL test (testcases/uast/unknown-comparison2.p):

def var u as logical init ?.

message "u = yes" u = yes.

message "u <> yes" u <> yes.

message "u = no" u = no.

message "u <> no" u <> no.

message "u = ?" u = ?.

message "u <> ?" u <> ?.

Results in 4GL:

u = yes no

u <> yes yes

u = no no

u <> no yes

u = ? yes

u <> ? no

Results in P2J:

u = yes ?

u <> yes ?

u = no ?

u <> no ?

u = ? yes

u <> ? no

The problem is that we are converting these expressions as if the comparison of an expression of unknown value to a logical constant is unknown,

when in fact it is known (unknown value is not true and it is not false, so u = yes and u = no should both evaluate to no, while u <> yes and u <> no

should both evaluate to yes.

However, we convert both u = yes and u <> no to u, and we convert u = no and u <> yes to not(u). Perhaps instead, we should convert u = yes and u

<> no to a new function, isTrue(u) (or _isTrue(u), where a boolean return value is more appropriate), and u = no and u <> yes to isFalse(u)

(_isFalse(u))?

See also testcases/uast/unknown-comparison.p for similar problems with range comparisons.

05/05/2024 1/4

#2 - 04/18/2014 02:10 PM - Greg Shah

Is this the same as #18?

#3 - 04/18/2014 02:28 PM - Eric Faulhaber

Seems it started off that way, though in the history, #18 only describes the inequality comparisons with true/false, then expands into where clause

issues. I guess that issue is still pending. However, I'd like to address the non-where-clause side of the issue (as described above) separately, which

seems to be a much more straightforward situation.

#4 - 04/18/2014 10:27 PM - Eric Faulhaber

- File ecf_upd20140418a.zip added

The attached update, based on some of Vadim's findings documented in #18 (note 9), resolves the issue.

#5 - 04/21/2014 11:20 AM - Eric Faulhaber

- File ecf_upd20140420a.zip added

Regression testing indicated that this change had the useful side effect of fixing some queries that were selecting the wrong index because two of the

roll-up cases (i.e., value = false and value <> true) were not correctly excluding where clause expressions.

However, it also showed that this fix was too aggressive, in that reverted shortcuts like

if (TransactionManager._isRetry())

...

to

if (_isEqual(TransactionManager.isRetry(), true))

...

The attached update fixes this. I am regression testing again.

#6 - 04/21/2014 12:49 PM - Greg Shah

Code Review 0420a

Not that you were asking, but I am fine with the changes.

Are the remaining portions of #18 only related to WHERE clauses?

05/05/2024 2/4

https://proj.goldencode.com/issues/18
https://proj.goldencode.com/issues/18
https://proj.goldencode.com/issues/18
https://proj.goldencode.com/issues/18

#7 - 04/21/2014 01:13 PM - Eric Faulhaber

Greg Shah wrote:

Not that you were asking, but I am fine with the changes.

OK, the feedback is helpful, particularly since the changes primarily affect base language and control flow.

Are the remaining portions of #18 only related to WHERE clauses?

Yes, I believe so.

#8 - 04/21/2014 01:31 PM - Greg Shah

It probably makes sense to note the status of this task in #18 and to move that task into the Database project. It may also make sense to update the

#18 task name to reflect the WHERE clause nature.

#9 - 04/21/2014 10:06 PM - Eric Faulhaber

- File ecf_upd20140421a.zip added

Regression testing again showed an unwanted change with the 0420a update. Previously,

if false = false

then

 code path A

else

 code path B

was rolled up to:

code path A

and code path B was dropped as dead code. With the 0420a update, it became:

if (_isEqual(false, false))

{

 code path A

}

else

{

 code path B

}

The attached update fixes this, as well as many other variations on this theme (see testcases/uast/unknown-comparison2.p).

05/05/2024 3/4

https://proj.goldencode.com/issues/18
https://proj.goldencode.com/issues/18
https://proj.goldencode.com/issues/18

#10 - 04/22/2014 11:53 AM - Eric Faulhaber

The 0421a update has passed conversion regression testing. Now performing runtime testing.

#11 - 06/02/2014 12:10 PM - Eric Faulhaber

- % Done changed from 0 to 100

- Status changed from New to Closed

- Assignee set to Eric Faulhaber

Update 0421a passed runtime regression testing and was committed to bzr rev. 10523 (although in the commit message I mistakenly referenced

issue 2266 instead of this issue).

#12 - 11/16/2016 12:06 PM - Greg Shah

- Target version changed from Milestone 11 to Cleanup and Stablization for Server Features

Files

ecf_upd20140418a.zip 3.85 KB 04/19/2014 Eric Faulhaber

ecf_upd20140420a.zip 4.03 KB 04/21/2014 Eric Faulhaber

ecf_upd20140421a.zip 4.04 KB 04/22/2014 Eric Faulhaber

Powered by TCPDF (www.tcpdf.org)

05/05/2024 4/4

http://www.tcpdf.org

