
User Interface - Bug #3559

trigger matching for multi-label events (i.e. RETURN/ENTER/CTRM-M,

PAGE-UP/PGUP/PREV-PAGE/PREV-SCRN)

05/01/2018 05:36 PM - Constantin Asofiei

Status: New Start date:

Priority: Normal Due date:

Assignee: % Done: 0%

Category: Estimated time: 0.00 hour

Target version:

billable: No case_num:

vendor_id: GCD version:

Description

History

#1 - 05/01/2018 05:46 PM - Constantin Asofiei

4GL has a weird way of matching an event to a trigger, if that event has multiple labels associated with it. For example, a APPLY "RETURN" will

match to a ENTER trigger, but only if there is no explicit RETURN trigger. There is also a special case for AUTO-RETURN, where it will match only

and only to a ENTER trigger, and not RETURN trigger.

For example, GuiKeyboard.standardKeyFunctions defines multiple events with more than one function - RETURN, COPY, CUT, PAGE_UP,

PAGE_DOWN, PASTE. We need to find the rules of trigger matching based on the defined triggers - I assume we will need to test misc combinations

of defined triggers, apply and keyboard-level raised events.

An assumption is that each case has a 'default' trigger which will be matched if an explicit trigger is not found; but I don't understand why an APPLY

"PG-UP" will match to a PREV-SCRN trigger even if there is an explicit PG-UP trigger. Maybe there is a specific order in which event labels are

searched for triggers? And if no trigger found for a label, go to the next one (and labels are sorted in some pre-determined way)?

In FWD's trigger matching, there is this code in EventList.lookupWorker and EventList.addEvent:

 caseEvent = setCase(event[i]);

 // alternate key labels won't be matched if we don't convert them to the primary label

 // convert the label to a key code, alternate labels are honored here

 int code = Keyboard.keyCode(caseEvent);

 // is this a valid label?

 if (code != -1)

 {

 // yes, it was a label so now convert the common code to the primary label name

 String primary = Keyboard.keyLabel(code);

 caseEvent = (primary.length() > 0) ? primary : caseEvent;

 }

This converts an event to its 'primary label' - the lookupWorker is a recent change which fixes a APPLY "RETURN", as the trigger was computing the

ENTER primary label and APPLY "RETURN" was not matching to it - but the problem is more complex than this.

Powered by TCPDF (www.tcpdf.org)

05/21/2024 1/1

http://www.tcpdf.org

