
Database - Feature #4030

improve CompoundQuery optimizer

04/01/2019 10:36 PM - Eric Faulhaber

Status: New Start date:

Priority: Normal Due date:

Assignee: % Done: 0%

Category: Estimated time: 0.00 hour

Target version:

billable: No version:

vendor_id: GCD

Description

Related issues:

Related to Database - Bug #4917: eliminate redundant ORDER BY elements in mul... New

History

#1 - 04/01/2019 10:52 PM - Eric Faulhaber

Some time ago, I implemented a runtime optimizer for CompoundQuery, which would analyze the components of the compound query and attempt to

synthesize a database server-side join to make the query more efficient.

The default behavior of CompoundQuery is to join its multiple tables at the FWD application server. This means it executes N + 1 selects at each pair

of joined tables, which is generally an expensive proposition. The optimizer seeks to identify cases where these joins can be safely moved to the

database server, to execute a single select to replace those default, N + 1 selects.

The results of the initial implementation are mixed. Some queries improved dramatically (like, minutes to seconds). Others actually got worse, due to

the server-side join resulting in a more expensive overall plan than if we had just allowed the default behavior to continue.

As a result of testing the optimizer with a lot of compound queries, I ended up watering down the implementation to a much less aggressive joining

algorithm. Now, we essentially just optimize joins of very limited complexity and allow the rest to continue un-optimized.

I think there is still headroom for improvement here. The initial testing was done with a limited variety of compound queries against PostgreSQL 9.1.

We probably need to attack this problem again with a greater variety of queries and a newer version of PostgreSQL. It may be that we have to make

the optimizer dialect-specific as well, since database query planners will differ in the plans they produce for various joins. Also, I did no query planner

tuning at all as part of the initial effort, and we know that at least in PostgreSQL, the tuning parameters can make a big difference in the final query

plans.

Another thing to consider is how to effectively and efficiently cache the optimizer's decisions, so we can short-circuit the optimization decision tree

when we hit what is essentially the same type of compound query we've encountered before.

One thing holding us back here is that to some degree we are flying blind in our optimization decisions, in that we don't have access to any database

statistics as an input.

05/15/2024 1/2

#2 - 09/27/2020 03:44 PM - Greg Shah

- Related to Bug #4917: eliminate redundant ORDER BY elements in multi-table queries added

Powered by TCPDF (www.tcpdf.org)

05/15/2024 2/2

http://www.tcpdf.org

