
Database - Bug #5978

handle implicit data type conversion in runtime (dynamic) conversion

01/17/2022 02:27 PM - Ovidiu Maxiniuc

Status: New Start date:

Priority: Normal Due date:

Assignee: % Done: 0%

Category: Estimated time: 0.00 hour

Target version:

billable: No case_num:

vendor_id: GCD version:

Description

History

#1 - 01/17/2022 02:56 PM - Ovidiu Maxiniuc

The static and dynamic conversion differ a bit from the point of view of handling compatible data types. We noticed that for some cases, the dynamic

conversion will do implicit conversion when operands of an expression are numeric and text, for example. In case of static conversion, these cases

generate error 223 (Incompatible data types in expression or assignment.)

Some changes in this regard were added in #3574 and #5905, but the behaviour is not identical. We should allow FWD to be as permissible and raise

errors as 4GL does. Also we need to heck whether other data types (like logical/date) are affected in same way.

Here is a short procedure which help identify the sensitive cases:

DEFINE TEMP-TABLE tt1 FIELD num AS INT /* or DECIMAL for some tests */.

DEFINE VARIABLE hqry AS HANDLE.

CREATE tt1.

num = 33.

CREATE QUERY hqry.

hqry:SET-BUFFERS(BUFFER tt1:HANDLE).

hqry:QUERY-PREPARE("for each tt1 where " +

 "num modulo 4 >= '2'"). /* predicate line */

hqry:QUERY-OPEN().

hqry:GET-NEXT().

IF NOT hqry:QUERY-OFF-END THEN

 MESSAGE tt1.num.

hqry:QUERY-CLOSE.

We can see at predicate line that there is a type mismatch which will cause error 223 to be thrown when compiled statically. However, at

runtime/dynamic mode, implicit conversion data type will occur. Below is a table with the results for other predicates:

num value predicate expression value output conclusion

33 num modulo 40 eq (3 + '3') 33 = 33 prints 33 + evaluates using

concatenation, then the

terms are compared with

positive result.

It is unknown if compare

operation is performed

numeric or string.

33 num modulo 40 eq (32.7 +

'0.3')

33 ≠ 32.70.3 none + evaluates using

concatenation, then the

terms are compared with

negative result.

It looks like the compare

05/18/2024 1/2

https://proj.goldencode.com/issues/3574

operation is performed on

string versions of the

terms.

33 num modulo 40 eq (33.3 -

'0.3')

33 = 33 prints 33 - evaluates using numeric

operator after converting

the second term to numeric

(decimal)

33 num modulo 40 eq '330' /

10

33 = 33 prints 33 / evaluates using numeric

operator after converting

the first term to numeric

(decimal)

33 num modulo 30 eq

chr(asc('0') + 3)

N/A fails: error 223 fail because of occurrence

of function(s) ?

33.3 num + 0 eq (33 + '.3') 33.3 = 33.3 prints 33.3 works for both string and

numeric data type

33.3 num + 0 eq (32 + '1.3') 33.3 ≠ 321.3 none right term evaluated as

string concatenation

33.3 num + 288 eq (32 + '1.3') 321.3 = 321.3 prints 33.3 right term evaluated as

string concatenation

33.3 num + 0 eq '333' / 10.0" 33.3 = 33.3 prints 33.3 right term evaluated as

division after converting the

string to numeric

Powered by TCPDF (www.tcpdf.org)

05/18/2024 2/2

http://www.tcpdf.org

