
Base Language - Support #6854

base language tests

10/18/2022 06:47 PM - Greg Shah

Status: WIP Start date:

Priority: Normal Due date:

Assignee: Marian Edu % Done: 0%

Category: Estimated time: 0.00 hour

Target version:

billable: No case_num:

vendor_id: GCD

Description

History

#1 - 10/20/2022 02:07 PM - Greg Shah

We need testcases that explore the following as comprehensively as possible. The intention is to provide complete coverage of the 4GL compatibility

of the "base language" support.

Expressions

literals of all data types and unknown value

all primitive data types (e.g. all BDTs)

operators including precedence (all except CONTAINS and :: which are database related)

logical OR

logical AND

bitwise OR

bitwise XOR

bitwise AND

logical NOT

bitwise NOT

=, EQ, <>, NE, <, LT, >, GT, ≤, LE, ≥, GE, MATCHES, BEGINS, (ignore CONTAINS)

binary +, binary -

*, /, MODULO

unary +, unary -

: (ignore ::)

()

function calls

handle-based attributes and methods, including chaining (chaining with handle from a var, temp-table field, method/function call, etc)

system handles, "instance" handles and system handles that are referenced by instance handles

OO properties, data members, class event references, method calls including chaining and both instance and static references

extent subscripting

for both complex expressions (including chaining in OO vars/properties/methods) and literals

out of bounds subscripts (above and below)

ranges (e.g. var[1 for 2], to the degree they can be referenced in expressions)

Assignments

= assignment operator

ASSIGN statement (except database-specific/UI-specific forms)

batching (are there any implications, perhaps on UNDO behavior?)

NO-ERROR

Built-in Functions

all non-database, non-UI built-ins

include "special" ones like DYNAMIC-FUNCTION, DYNAMIC-NEW, DYNAMIC-PROPERTY, NEW, CAST, TYPE-OF, IF and others which

take non-regular syntax (things that cannot normally exist in an expression)

"Global Variables" (built-in functions which don't take parameters), including assignment for the 4 that are not read-only

(CURRENT-LANGUAGE, PROMSGS, PROPATH and TERMINAL)

Variable Definitions

DEFINE VARIABLE - include all permutations of definition options, with both the source and the target of a LIKE clause.

inline AS or LIKE clause in format phrase

inline AS or LIKE clause in a MESSAGE SET or MESSAGE UPDATE stmt

inline with UPDATE/SET/PROMPT-FOR i AS INT

Widget Pools

named/unnamed widget pools

test all widgets via the CREATE statement, and their state after the widget pool has been deleted (implicitly or explicitly)

Accumulators

accum function and statement, sub- cases

05/05/2024 1/7

no UI or database access

there are extensive tests in testcases/uast/accum, although some use UI, the others can be re-written for automation.

Top-Level Block Definitions

this can work in conjuction with the 'Control Flow' section

for OO blocks:

interfaces, abstract classes, inheritance

enums, flagenums

constructor (static or instance)

destructor

methods (static or instance)

method/constructor override/overload - including the dataset/dataset-handle/table/table-handle/buffer overload

all access modifiers

all return types, including extent

for procedure blocks:

function definitions (including IN SUPER, IN handle, FORWARD), all return types, including extent

procedure definitions (including IN SUPER)

all allowed access modifiers

Control Flow

"inner blocks" (not FOR blocks/FOR loops, EDITING or triggers which can be handled in the database or UI tasks)

DO

REPEAT

"top-level" blocks

internal procedures

external procedures

user-defined functions

OO methods

constructors

destructors

property getters, explicit or implicit (including fixed and indeterminate extent).

property setters, explicit or implicit (including fixed and indeterminate extent).

PUBLISH, SUBSCRIBE and UNSUBSCRIBE

this-procedure/source/target-procedure handles

there are (extensive) tests in the testcases/uast/super_procs, related to super procedures - these can be adjusted to be included in

CI/CD

this is included here as these handles are related to the control flow

function calls (IN SUPER, IN handle, FORWARD)

procedure calls (IN SUPER)

RUN - includes persistent and non-persistent cases

DYNAMIC-FUNCTION()

SUPER() function

SUPER statement (procedure)

SUPER class reference for method invocation

THIS-OBJECT class reference for method invocation

RUN SUPER

IF statement

CASE - including strings.

RETURN - including RETURN ERROR and RETURN-VALUE

LEAVE

NEXT

UNDO

PAUSE

STOP

QUIT

CALL handle-based resource and usage

block options (ON phrases, TO and WHILE clauses, TRANSACTION, STOP-AFTER; the frame phrase and DB stuff should be ignored

here)

block properties

transactions/sub-transactions

UNDO

retry

NO-ERROR

conditions

structured error handling (try/catch/finally, OO exceptions, BLOCK-LEVEL, ROUTINE-LEVEL, interaction with legacy conditions); nested

catch statements (a block with 'catch' statement from within the 'catch' or 'finally' block)

PROPATH() function and PROPATH statement

Parameter Passing

input, input-output, output and return (where possible)

full range of BDT types (database features like buffers, datasets, tables... will be worked in a separate task)

functions

internal/external procs

OO methods

extents

Type Conversion

various explicit cases (e.g. STRING(), DATE(), INTEGER()...) including default and non-default format strings

implicit conversions (as parameters, operands or assignments)

05/05/2024 2/7

example: passing a CHARACTER to a INTEGER parameter at a RUN statement

polymorphic type support

dynamic invocation mechanisms that return BDT instead of a specific type (e.g. DYNAMIC-FUNCTION(), DYNAMIC-INVOKE())

Format Strings

not in the UI, but in string formatting

cover all data types including wierd ones like OO references, handles, binary types

ensure cases exist for all format strings used in top 10 converted applications (can be seen in analytics reports)

Shared Resources

global/new/shared options, all combinations, including error management

variables

streams

other resources (buffers, queries, temp-tables, frames and menus) will be handled in different tasks

Other Extent Support

dynamic extents

range extents (outside of expressions)

unsubscripted extent references

initialization

asssignment

Security

make sure to address all features from #3752, #3810, #4108, #4380, #6422, #6423, #6399, #6419, #6420, #6421, #6422

handles and system handles including all attributes and methods

AUDIT-CONTROL

AUDIT-POLICY

CLIENT-PRINCIPAL

SECURITY-POLICY

AUDIT-ENABLED()

CAN-DO()

CREATE CLIENT-PRINCIPAL

DECRYPT()

ENCODE()

ENCRYPT()

GENERATE-PBE-KEY()

GENERATE-PBE-SALT()

GENERATE-RANDOM-KEY

GENERATE-UUID

GET-DB-CLIENT()

GUID

HEX-DECODE()

HEX-ENCODE()

MD5-DIGEST()

MESSAGE-DIGEST()

RANDOM()

SET-DB-CLIENT()

SET-USERID()

SHA1-DIGEST()

SSL-SERVER-NAME()

USERID

I18N

all features from our 4 phases of work (#3292, #3753, #4761, #6451) including sub-tasks and customer specifics in #4379

string translation support #3817 and related

lots of tests already exist, we need to integrate these and fill in the gaps/expand to be complete

File System Access

FILE-INFO system handle

special "directory" stream (INPUT FROM OS-DIR)

OS-APPEND

OS-COPY

OS-CREATE-DIR

OS-DELETE

OS-DRIVES() function

OS-RENAME

SEARCH() function

Streams

DEFINE STREAM

unnamed streams

special streams (directory, printer, terminal; ignore clipboard)

statements

INPUT FROM

INPUT THROUGH

INPUT-OUTPUT THROUGH

OUTPUT TO

OUTPUT THROUGH

INPUT CLOSE

INPUT-OUTPUT CLOSE

OUTPUT CLOSE

use the full range of access statements and functions (except redirected terminal for output/input which is in UI tests)

05/05/2024 3/7

https://proj.goldencode.com/issues/3752
https://proj.goldencode.com/issues/3810
https://proj.goldencode.com/issues/4108
https://proj.goldencode.com/issues/4380
https://proj.goldencode.com/issues/6422
https://proj.goldencode.com/issues/6423
https://proj.goldencode.com/issues/6399
https://proj.goldencode.com/issues/6419
https://proj.goldencode.com/issues/6420
https://proj.goldencode.com/issues/6421
https://proj.goldencode.com/issues/6422
https://proj.goldencode.com/issues/3292
https://proj.goldencode.com/issues/3753
https://proj.goldencode.com/issues/4761
https://proj.goldencode.com/issues/6451
https://proj.goldencode.com/issues/3817

DOWN

EXPORT

IMPORT

PAGE

PAGE-NUMBER() function

PAGE-SIZE

PUT

SEEK statement and SEEK() function

all I/O options

Shell Access

OS-COMMAND

UNIX

DOS

Native Library Calls (existing tests should be complete)

LOBS (non-database forms)

COPY-LOB - NUL '\0' byte needs to be tested at the begining/middle/end of the source, different codepages in CONVERT phrase.

LONGCHAR

integration with MEMPTR and RAW

Environment and Registry/INI Access

LOAD, UNLOAD, USE for both Windows Registry as well as stanza-based .ini files

OS-GETENV

OS-ERROR

OPSYS

PROCESS-ARCHITECTURE

PROGRESS

PROVERSION

some SESSION system handle usage

XML

SAX

DOM

Sockets

server

client

SSL and non-SSL

various connect options

Usage of the above features in database/temp-table usage (e.g. queries, WHERE clauses, CONTAINS, :: syntax, ...) is NOT part of these tests.

Instead, we will deal with those use cases in #6855.

Usage of OCX, UI/widget-based attributes/methods, COM automation and other UI features are not part of these tests. We will deal with the UI stuff

in #6856.

Some of the above items (e.g. native API calls) already have testcases and can be included once they are reworked in #6858. I'm just trying to have

a complete list that we can use to confirm when we are done.

I expect these tests to be split into smaller functional groupings that can be run on their own. I don't expect a single set of tests which includes all of

these categories. Even larger categories like BDT tests should be split into type-specific groupings (e.g. MEMPTR and RAW tests might be a single

set of tests).

We should plan for related sets of tests to be runnable which may combine features in different ways. This would require being able to run the same

test from multiple test sets/targets. For example, the same built-in STRING() function would be run in BDT tests, type conversion tests, format string

tests. We do need the concept of being able to run through tests avoiding duplicates (for CI/CD purposes), but the idea here is that we may need

convenience groupings that allow specific testing to be targeted.

05/05/2024 4/7

https://proj.goldencode.com/issues/6855
https://proj.goldencode.com/issues/6856
https://proj.goldencode.com/issues/6858

#2 - 03/14/2023 12:41 PM - Constantin Asofiei

Greg, do we need UPDATE/SET/PROMPT-FOR i AS INT definitions?

#3 - 03/14/2023 12:54 PM - Constantin Asofiei

Greg, some other notes:

this-procedure/source/target-procedure handles - there are (extensive) tests in the old testcases project, related to super procedures - these can

be adjusted to be included in CI/CD

accumulators - do we include them here? they can work without db access.

widget-pools - these are not specific to UI widgets, but to any resource. do we include them here?

#4 - 03/14/2023 02:28 PM - Greg Shah

UPDATE/SET/PROMPT-FOR i AS INT

Yes, this should be added to var defs.

this-procedure/source/target-procedure handles - there are (extensive) tests in the old testcases project, related to super procedures - these can

be adjusted to be included in CI/CD

Yes

accumulators - do we include them here? they can work without db access.

Yes

widget-pools - these are not specific to UI widgets, but to any resource. do we include them here?

Yes

05/05/2024 5/7

#5 - 03/14/2023 02:55 PM - Constantin Asofiei

Greg, I've edited #6854-1 - my changes are marked with 'CA:' and also 'GES:' question.

#6 - 03/14/2023 06:21 PM - Greg Shah

do we include the dataset/table overload?

Yes, it is easier to do it here than in the database tests.

In regard to your CA: notes, I am OK with all of them. The only question I have:

polymorphic type support (CA: e.g. passing a CHARACTER to a INTEGER parameter at a RUN statement)

This is OK, but I was thinking more about all the different DYNAMIC-FUNCTION(), DYNAMIC-INVOKE() runtime cases that return BDT and must be

handled as a POLY case.

#7 - 03/15/2023 05:26 AM - Constantin Asofiei

Greg, regarding prioritizing the tests; my order would be this:

structured error handling

i18n

security

#8 - 03/15/2023 05:58 AM - Greg Shah

Constantin Asofiei wrote:

Greg, regarding prioritizing the tests; my order would be this:

structured error handling

i18n

security

I think parameter processing and extents (all forms, not just params) should also be done early on.

05/05/2024 6/7

https://proj.goldencode.com/issues/6854#note-1

#9 - 03/24/2023 08:56 AM - Marian Edu

Greg, this is a rather large task, can we create sub-tasks for each topic and we refine the priority for each of those?

Other than that some of the topics are already (partially) covered by existing unit tests, most of them already converted to ABLUnit format.

#10 - 03/27/2023 03:22 AM - Greg Shah

this is a rather large task, can we create sub-tasks for each topic and we refine the priority for each of those?

Sure. I suggest we only open sub-tasks for the next set of items to work on, rather than opening subtasks for everything and then having to manage

different priorities. As we need to open new subtasks we can add new ones to open more work.

Other than that some of the topics are already (partially) covered by existing unit tests, most of them already converted to ABLUnit format.

Anything like that would just need to be checked to:

fill in any gaps

meet our current standards

make sure everything is properly automated

Some of the tests listed above might be overlapping. In those cases we don't need to duplicate the tests. We can just make sure that any

common/shared set of tests can be executed from different test groupings as needed.

#11 - 06/21/2023 07:49 AM - Marian Edu

- Status changed from New to WIP

Powered by TCPDF (www.tcpdf.org)

05/05/2024 7/7

http://www.tcpdf.org

