
Database - Support #6855

database/persistence tests

10/18/2022 06:49 PM - Greg Shah

Status: WIP Start date:

Priority: Normal Due date:

Assignee: Marian Edu % Done: 0%

Category: Estimated time: 0.00 hour

Target version:

billable: No case_num:

vendor_id: GCD

Description

History

#1 - 10/22/2022 11:51 AM - Greg Shah

We need testcases that explore the following as comprehensively as possible. The intention is to provide complete coverage of the 4GL compatibility

of the "database/persistence" support.

Queries and Query-Integrated Blocks (all forms including multi-table forms)

FIND

FIRST/LAST/NEXT/PREVIOUS, plus the implicit unique find

FIND literal (i.e., the short form for find the unique record with the literal value on the primary (unique) index)

FOR blocks and loops including FIRST, LAST, EACH and no qualifier

DO PRESELECT

REPEAT PRESELECT

OPEN QUERY

with and without DEFINE QUERY

multiple OPEN QUERY statements sharing same DEFINE QUERY

other features

SCROLLING queries

NEXT, PREV, FIRST, CURRENT and LAST along with QUERY-OFF-END behavior

REPOSITION with ROWID, RECID, ROW, FORWARDS and BACKWARDS

INDEXED-REPOSITION

NUM-RESULTS

BREAK keyword generating groups including ACCUM, ACCUMULATE, FIRST-OF, LAST-OF

BY clause used for ordering is important

default ordering if no BY clause exists

single-table query on a table (without index)

single-table query on a table (with index)

multi-table query on tables (with/without index combinations)

DESCENDING

[LEFT] OUTER-JOIN clause

MAX-ROWS limit

FIELDS/EXCEPT options

all non-FIND types should have some multi-table tests:

all permanent tables

all temp-tables

mixture of permanent tables and temp-tables

WHERE clauses (expression processing)

literals of all data types and unknown value

all field data types (some only are possible in temp-tables)

operators including precedence (including CONTAINS and :: which are database-specific)

logical OR

logical AND

bitwise OR

bitwise XOR

bitwise AND

logical NOT

bitwise NOT

=, EQ, <>, NE, <, LT, >, GT, ≤, LE, ≥, GE, MATCHES, BEGINS, CONTAINS

binary +, binary -

*, /, MODULO

unary +, unary -

: and ::

05/06/2024 1/4

()

function calls including:

built-in functions (for which we have SQL UDFs)

built-ins which can't be UDFs (ECF: aren't there some 4GL built-in functions which cannot be or are not implemented as a database

UDF?)

functions implemented in 4GL code:

which do not reference the query's buffer

which do reference the query's buffer

handle-based attributes and methods, including chaining

system handles, "instance" handles and system handles that are referenced by instance handles

OO properties, data members, class event references, method calls including chaining and both instance and static references

extent subscripting

for both complex expressions and literals

out of bounds subscripts (above and below)

ranges (e.g. var[1 for 2], to the degree they can be referenced in expressions)

Buffer Scoping (make sure to start with the cases in our documentation, scroll down to "Record Scopes", these were used to initially identify the

scoping rules)

Flushing, Validation

the goal is to have a large variety of tests which together define the behavior of when newly created records, or records read from the

database and updated, need to be validated and flushed (back) to the database; we need to understand:

are validation and flushing joined at the hip, or are there cases when they are performed separately?

what are the conditions under which a newly created record is validated? flushed?

what are the conditions under which an updated record is validated? flushed?

what is the relationship between validation/flushing of:

field updates?

index updates?

partial index updates?

does it differ between newly created records and records read from the database?

what are the conditions under which a write triggers should fire (or should not fire), and is this related to validation and flushing?

Triggers

only schema based / only session based / both kind of triggers defined

trigger events: CREATE, DELETE, FIND, WRITE and ASSIGN

NEW BUFFER and OLD BUFFER in WRITE session-based triggers

ensure trigger is fired at the right time: when the buffer is released or the transaction ends (other cases)

triggers firing other triggers / how we avoid executing the same trigger in an infinite loop

the effect of return error/no-apply in database triggers

Locking

NO-LOCK

SHARE-LOCK (including implicit usage)

EXCLUSVE-LOCK

NO-WAIT

how locks get released (implicitly and explicitly via RELEASE), including interactions with buffer scoping

how locks get downgraded, including interactions with buffer scoping

remote database tests

CAN-FIND()

in a WHERE clause, nested at various levels (2, 3, 4)

using AND CAN-FIND(...)

using OR CAN-FIND(...)

outside of a WHERE clause

default lock (NO-LOCK)

SHARE-LOCK/EXCLUSIVE-LOCK

Sequences

minimal/default definition

using all options

Assignments

= assignment operator for fields

ASSIGN statement database-specific forms

batching (how multiple database field assignments differ in an ASSIGN statement versus implementing the same changes in separate

assigment statements)

NO-ERROR

Built-in Functions

all database built-ins

include "special" ones like the various record funcs which take non-regular syntax (things that cannot normally exist in an expression)

non-UDFs (database related functions that can only be called from business logic, not in WHERE clauses)

UDFs (built-ins used in WHERE clauses) ECF: this may not be different than above, I am including it here to be complete

Table Copying, Emptying and Comparison

COPY-TEMP-TABLE handle based method

EMPTY-TEMP-TABLE statement

BUFFER-COPY statement and handle based method

same table and different tables with different structure

various options, including:

EXCEPT/USING

ASSIGN

NO-LOBS

BUFFER-COMPARE statement and handle based method

05/06/2024 2/4

https://proj.goldencode.com/artifacts/javadoc/latest/api/com/goldencode/p2j/uast/package-summary.html#Schema_Names

same table and different tables with different structure

various options, including

EXCEPT/USING

CASE-SENSITIVE/BINARY

SAVE [RESULT IN]

[EXPLICIT] COMPARES

NO-LOBS

Parameter Passing

Modes

input

input-output

output

return (where possible)

Types

buffer

dataset

dataset-handle

table

table-handle

Other options

APPEND

BY-VALUE (default), BY-REFERENCE, BIND (for the types that support these options)

functions

internal/external procs

OO methods

extents

before table and related method/attributes/scope

Shared Resources

buffers

queries

temp-tables

Other Extent Support

dynamic extents

range extents (outside of expressions)

unsubscripted extent references

initialization

assignment (including bulk and individual element)

Dynamic Database

queries

temp-tables

validation expression

::

buffer handle

buffer-field handle

Word Indexes

SAVE CACHE

not sure how to test this; we implement this feature differently than OE (see Non-Standard Save Cache Implementation)

Handle and System Handles (including all of their attributes and methods)

buffer objects

buffer fields

data-relation

data-source

query object

Security

(TODO IAS, OM: need test ideas here)

I18N

UTF-8 and other CPs (stick to those we support currently)

CLOB, BLOB, database-related COPY-LOB

multi-tenant

TBD how these will look and what 4GL features we will support; currently, we are taking a database-per-tenant approach to implementation

multi-database, database connect/disconnect, connect options

cross-database joins

across permanent databases

across a permanent database and the temp-table database (note that in the FWD implementation, temp-tables and permanent tables are in

separate databases; this affects the conversion of such joins, even if OE handles it differently)

schema features

unique and primary constraints of indexes (is this already part of "Validation" bullet?)

mandatory fields (is this already part of "Validation" bullet?)

INITIAL, POSITION, ORDER, DECIMALS, DESCRIPTION, LABEL, FORMAT specification of fields

schema triggers

ProDataSets, data sources, data relations

XML and JSON serialization/deserialization

two-phase commit (future; not implemented in FWD yet)

Some of the above items (e.g. ProDataSets) already have testcases and can be included once they are reworked in #6858. I'm just trying to have a

05/06/2024 3/4

https://proj.goldencode.com/projects/p2j/wiki/Non-Standard_Save_Cache_Implementation
https://proj.goldencode.com/issues/6858

complete list that we can use to confirm when we are done.

I expect these tests to be split into smaller functional groupings that can be run on their own. I don't expect a single set of tests which includes all of

these categories.

Initial priorities:

validation/flushing

triggers (especially write triggers)

datasets

open for discussion, in case starting with simpler constructs and building on them makes more sense...

#2 - 11/06/2023 04:23 AM - Marian Edu

- Status changed from New to WIP

Powered by TCPDF (www.tcpdf.org)

05/06/2024 4/4

http://www.tcpdf.org

