
User Interface - Support #6856

user interface tests

10/18/2022 06:51 PM - Greg Shah

Status: New Start date:

Priority: Normal Due date:

Assignee: Marian Edu % Done: 0%

Category: Estimated time: 0.00 hour

Target version:

billable: No case_num:

vendor_id: GCD version:

Description

Subtasks:

Support # 7337: UI - Events New

Support # 7338: UI - Layout and Sizing New

Support # 7339: UI - Focus New

History

#1 - 11/02/2022 01:55 PM - Greg Shah

We need testcases that explore the following as comprehensively as possible. The intention is to provide complete coverage of the 4GL compatibility

of the "user interface" support.

There are multiple problems to be considered for this set of tests.

interactive vs non-interactive

as much as possible, we want to leverage non-interactive tests since these can be most easily automated

non-interactive tests can be implemented with ABLUnit

there is no substitute for some amount of interactive tests

interactive tests will be implemented with Sikuli

ChUI vs GUI

most UI features can be executed in both "modalities", with some slight differences in behavior

unless a feature is unambiguously impossible to execute in both modalities, we will implement tests such that they can be run twice (once in

ChUI and another time in GUI)

dynamic and static

widget/frame/window creation should be tested in both dynamic and static forms

Testcases Needed

All Widget Types

all built-in 4GL widgets

data usage

each widget should have tests for all valid data types that it supports

both variable and field lvalues should be tested

complex expressions where supported (e.g. in DISPLAY statements)

widgets

BROWSE including columns and cells

BUTTON

COMBO-BOX

DIALOG-BOX

FIELD-GROUP

FILL-IN

FRAME

EDITOR

IMAGE

LITERAL

MENU

MENU-ITEM

RADIO-SET

RECTANGLE

SELECTION-LIST

SLIDER (note: ChUI support is missing)

SUB-MENU

05/16/2024 1/6

TEXT

TOGGLE-BOX

WINDOW

OCX replacements

as a 4GL widget

as an OCX control using CONTROL-FRAME and COM properties/methods

TYPE reports correct value for a 4GL widget as well as OCX converted control

controls

BUTTON-LIST (SSListBar)

CALENDAR

HTML-BROWSER

IMAGE-LIST

MSGBLASTER

Progress Indicator

PSTIMER

SPREADSHEET

TAB-SET

TREEVIEW

TREELIST

System UI elements

Scrolling UI elements (including scroll context menus)

Tooltips where applicable

Window Support

default window

current window

moving

sizing

modal windows/dialogs

message boxes (including info, warning, error)

multi-window operations including focus handling and activation/deactivation

decorations including min/max/restore, titlebar, the system menu and window border

message lines

status lines

z-order (including TOP-ONLY)

Old School Statements

BELL

CHOOSE (both row and field modes)

CLEAR

DISPLAY

DOWN

EDITING blocks

ENTERED function

GO-PENDING function

HIDE

MESSAGE

PAUSE

PROMPT-FOR

PUT CURSOR

PUT SCREEN

READKEY

SCROLL

SET

STATUS

UNDERLINE

UP

UPDATE

VIEW

Event Based UI

Triggers

ON statement

TRIGGERS phrase

APPLY

DISABLE

ENABLE

ENTERED function

NEXT-PROMPT

PROCESS EVENTS

WAIT-FOR

SET-WAIT-STATE method

nested WAIT-FOR

default processing of events

Screen Buffers

ASSIGN statement

DISPLAY statement

FRAME-VALUE function and statement

05/16/2024 2/6

INPUT function

INPUT-VALUE attribute

SCREEN-VALUE attribute

Down Frames

Nested Frames

Key and Mouse Input (including all mouse buttons and scroll wheel)

Format Strings

Validation

Focus

Mouse hover highlighting

Layout and Sizing

Drag & Drop where applicable including related events

Accelerator keys and mnemonics

Built-In Functions and Other Helpers

CURRENT-RESULT-ROW

FRAME-COL

FRAME-DB

FRAME-DOWN

FRAME-FIELD

FRAME-FILE

FRAME-INDEX

FRAME-LINE

FRAME-NAME

FRAME-ROW

IS-ATTR-SPACE

KBLABEL

KEYCODE

KEYFUNCTION

KEYLABEL

LASTKEY

LIST-EVENTS

LIST-QUERY-ATTRS

LIST-SET-ATTRS

LIST-WIDGETS

RGB-VALUE()

SCREEN-LINES

TERMINAL built-in function and statement

@-base fields

Accumulators

ACCUM function

ACCUMULATE statement

all aggregate phrase types

integration into DISPLAY and down frame processing

Graphics Resources

loading, unloading, sizing, manipulation

icons

images

Colors

Fonts

Widget Pools and Resource Lifetimes

CREATE <widget>

CREATE WIDGET-POOL

DEFINE *

DELETE WIDGET

DELETE WIDGET-POOL

Redirected Terminal (we have a start on these tests in the testcases/uast/redirected* and testcases/uast/io/*)

SYSTEM-HELP

System Dialogs

SYSTEM-DIALOG COLOR

SYSTEM-DIALOG FONT

SYSTEM-DIALOG GET-DIR

SYSTEM-DIALOG GET-FILE

SYSTEM-DIALOG PRINTER-SETUP (note: only partial support is available in FWD)

COM Automation

Direct Manipulation

SELECTABLE, MOVABLE, RESIZABLE widget attributes

Global and frame-only direct manipulation events

Widget enumeration (FIRST-CHILD and related)

FRAME and widgets z-order

Web GUI specific

Session life time (for example the web sessions won't time out unexpectedly)

Session resiliency (for example temporary network errors)

File upload

Browser window resize and related events

05/16/2024 3/6

I expect these tests to be split into smaller functional groupings that can be run on their own. I don't expect a single set of tests which includes all of

these categories.

#2 - 03/15/2023 09:20 AM - Hynek Cihlar

The items with the highest priorities are (in the order from highest):

Event Based UI

Layout and Sizing

Focus

Window Support

Screen Buffers

All Widget Types

Old School Statements

#3 - 04/26/2023 10:10 AM - Greg Shah

- Assignee set to Marian Edu

#4 - 06/07/2023 09:35 AM - Greg Shah

For details on using Sikuli, see Automating GUI Testing.

Let's discuss the issues that the Acorn team has found and come up with solutions. Roger will help with this since he is our leading Sikuli expert. If

we learn things that are not in the wiki page, please add them as we go.

#5 - 06/08/2023 08:19 AM - Greg Shah

Additional items to discuss:

Should we use ABLUnit for tests that also need Sikuli or the Harness to handle the interactive parts? If so, how do we launch and manage

Sikuli/Harness from ABLUnit?

How can we launch a FWD web client from ABLUnit?

What would be needed to use our same testing approach on OE as well as FWD? There is a value to doing this, though it is not an absolute

requirement. If we do rely upon anything specific to FWD, that might be OK but it would probably mean that using these tests under OE would

not be possible.

What problems have Acorn found with Sikuli and how can we resolve these?

#6 - 08/07/2023 09:50 AM - Vladimir Tsichevski

Greg Shah wrote:

Additional items to discuss:

Should we use ABLUnit for tests that also need Sikuli to handle the interactive parts?

IMO we should not. ABLUnit and Sikuli are two approaches, which never intersect. ABLUnit is pure 4gl, which mean there is no way to reach Sikuli

API from ABLUnit. Sikuli approach works for any GUI application on any platform, and it cannot use 4gl.

So we should use one or another approach depending on the problem we are dealing with, but never try to make a hybrid of the two.

05/16/2024 4/6

https://proj.goldencode.com/projects/p2j/wiki/Automating_GUI_Testing

The JUnit5 is quite natural to orchestrate Sikuli tests.

If so, how do we launch and manage Sikuli from ABLUnit?

IMO we can not and need not doing this.

What would be needed to use our same testing approach on OE as well as FWD? There is a value to doing this, though it is not an

absolute requirement. If we do rely upon anything specific to FWD, that might be OK but it would probably mean that using these tests

under OE would not be possible.

With Sikuli this problem does not exist. You can run the same tests (some parametrization is required though) with FWD and "native" OE provided

Sikuli can access the OE screen.

What problems have Acorn found with Sikuli and how can we resolve these?

I'd like to know this either. Probably, I have some solutions already.

#7 - 08/07/2023 10:19 AM - Marian Edu

Vladimir Tsichevski wrote:

Should we use ABLUnit for tests that also need Sikuli to handle the interactive parts?

IMO we should not. ABLUnit and Sikuli are two approaches, which never intersect. ABLUnit is pure 4gl, which mean there is no way to reach

Sikuli API from ABLUnit. Sikuli approach works for any GUI application on any platform, and it cannot use 4gl.

There was no plan to use 4gl from Sikuli, more likely we see Sikuli just like a surogate for user interaction - so just input, no real tests done on Sikuli

part.

So we should use one or another approach depending on the problem we are dealing with, but never try to make a hybrid of the two.

I have nothing against this approach, for UI tests that require user interaction we can only build the screen and then do the testing in Sikuli. This is

more or less what one customer is doing with the cucumber/gerkin dsl & Sikuli but this is for testing real application not writing simple 'unit-tests' that

05/16/2024 5/6

happens to require some user interaction.

If so, how do we launch and manage Sikuli from ABLUnit?

IMO we can not and need not doing this.

The idea was something down that line... inside the test method start sikuli script that waits for something to show, then we start the user interface

and the wait-for on it will block until the UI is closed. This will be done by the Sikuli script that will need to do a series of action, last of witch will be to

close the UI screen. After that the test will resume and we can check the outcome (some output parameter on the UI screen).

What would be needed to use our same testing approach on OE as well as FWD? There is a value to doing this, though it is not an

absolute requirement. If we do rely upon anything specific to FWD, that might be OK but it would probably mean that using these tests

under OE would not be possible.

With Sikuli this problem does not exist. You can run the same tests (some parametrization is required though) with FWD and "native" OE

provided Sikuli can access the OE screen.

What problems have Acorn found with Sikuli and how can we resolve these?

I'd like to know this either. Probably, I have some solutions already.

We've only scratched the surface with Sikuli (the Java API) and issues we're mostly caused by the OCR - seems to be better to narrow down the

region for text to be recognised and then there are some issue there, the font and size can play a role and also similar letters (radio set items can also

get on 'O' in front of each items sometimes).

But, as said I think we're not going to invest more time on this approach with Sikuli - if tests are to be written in Sikuli then we can stick to just provide

the UI screens and the test scenarios as Word documents. I will give this new idea a try and see if we can continue to use ABLUnit for testing and use

Sikuli only to perform user actions but do not test the outcome inside Sikuli.

This might work with Swing client (gui/chui) although I don't know if the FWD implementation of ABLUnit will allow the wait-for in the first place. For

Web client I think the only approach will be to write Sikuli tests against an application like 'hotel' maybe or create one specifically for testing, have that

running on a server and run Sikuli tests on the client with that app open in the web browser. For one application for instance they always started from

the login screen, so new web browser window, do the login and navigate to the screen to test as the first steps of Sikuli test.

Powered by TCPDF (www.tcpdf.org)

05/16/2024 6/6

http://www.tcpdf.org

