
Base Language - Feature #7000

Replace old-style synchronization primitives with java.util.concurrent classes

12/20/2022 02:58 AM - Igor Skornyakov

Status: New Start date:

Priority: Normal Due date:

Assignee: % Done: 0%

Category: Estimated time: 0.00 hour

Target version:

billable: No vendor_id: GCD

Description

History

#1 - 12/20/2022 03:22 AM - Igor Skornyakov

FWD code contains many places where old-style synchronization primitives (synchronized blocks, wait/notify) are used.

I think that it makes sense to re-work such places using java.util.concurrent classes.

This will not only potentially reduce contention but will make the program logic cleaner.

For example, we can use ReentrantReadWriteLock instead of synchronized blocks for a more fine-grained synchronization. Using classes from

java.util.concurrent.atomic allows us to eliminate synchronization on access to a single variable. Using concurrent collections simplifies working with

shared maps, sets, lists, and queues. Using barriers and executors instead of code based on wait/notify greatly simplifies the program logic. In many

situations using executors also allows re-using the threads instead of starting new ones which is more expensive.

#2 - 12/20/2022 06:24 AM - Greg Shah

- Start date deleted (12/20/2022)

Do you have specific areas seen in profiling where these old-style primitives are heavily involved?

#3 - 12/20/2022 07:47 AM - Igor Skornyakov

Greg Shah wrote:

Do you have specific areas seen in profiling where these old-style primitives are heavily involved?

It is difficult to see this in a profiler because we need to simulate a heavy load to see the monitors' activity in a situation of high contention.

However, I've seen a significant improvement with java.util.concurrent in my previous projects where it was relatively easy to create an automated

stress test and see the application behavior under a high load.

Powered by TCPDF (www.tcpdf.org)

05/05/2024 1/1

http://www.tcpdf.org

