
Database - Feature #7062

Direct access to H2 internals to solve basic queries

01/23/2023 05:38 AM - Alexandru Lungu

Status: Test Start date:

Priority: Normal Due date:

Assignee: Alexandru Lungu % Done: 100%

Category: Estimated time: 0.00 hour

Target version:

billable: No version:

vendor_id: GCD

Description

History

#1 - 01/23/2023 06:23 AM - Alexandru Lungu

I've done slim experiments with the H2 internals to understand how easy/fast is to interface directly with H2. I have the following comparative avg.

results for the fetching of all records by recid from a table with 1,000,000 records:

2,800 ms for using a static SQL for each record: these are used in FWD if the FQL is statically converted.

800 ms for using a single prepared statement: this is used in FWD if there are query parameters and the prepared statement is cached

300 ms for direct use of the primary key (tree) index: this is not in FWD, but can be used if FQLPreprocessor detects that this is a find by rowid

type of query.

30 ms for direct use of scan index key look-up: this is not in FWD and requires a bit of work. This kind of interaction requires the record key. This

key is basically the index of the record inside the scan index array. Maybe we can keep a server-side mapping between multiplex/recid and H2

key for faster look-up?

All in all, the direct access, as expected, is faster as it doesn't need to interface with JDBC through SQL that needs to be generated, parsed, cached,

planned, executed, etc. I don't promote this kind of interaction on a general scale. However, there are many basic queries which are trashed between

different layers to accomplish very simple tasks (e.g. retrieving a record by its recid).

For this matter, I suggest using some sort of EmbeddedFWDDriver inside the H2 engine as an interface for very simple tasks, which can be

accomplished directly on the database store where there is no need of locking, transactions, complex planning, etc.

Below is a snippet I used for testing, although it may need some improvements:

 JdbcConnection conn = (JdbcConnection) DriverManager.getConnection("jdbc:h2:mem:;mv_store=false;");

 Session session = (Session) conn.getSession();

 // direct access

 Table t = session.findLocalTempTable("TT");

 Index idx = t.getUniqueIndex();

 Cursor cursor = idx.find(session, new SimpleRow(new Value[] { ValueInt.get(1) }), null);

 if (cursor.next())

 {

 Row r = cursor.get();

 int v = r.getValue(0).getInt();

 }

Once we can get a better grip on this kind of interaction, we can extend it to aid higher level of representations from FWD:

FIND tt WHERE recid(tt) = 2.

FIND FIRST/LAST tt. is basically the left-most/right-most node in the used index.

FOR/PRESELECT tt WHERE recid(tt) = 2.

find with unique indexed field

From the implementation point of view, this can go as a special kind of Results implementation in FWD, one that simply uses EmbeddedFWDDriver.

05/18/2024 1/24

#2 - 01/23/2023 02:52 PM - Greg Shah

This is really interesting. For temp-tables (and using H2 for a permanent database), it is conceptually close to the way the 4GL accesses records in

shared memory mode.

Would this be used when we have a projection query that returns the primary key for a record (or list of primary keys for a list of records)?

#3 - 01/24/2023 05:16 AM - Alexandru Lungu

Greg Shah wrote:

This is really interesting. For temp-tables (and using H2 for a permanent database), it is conceptually close to the way the 4GL accesses

records in shared memory mode.

Exactly. However, I didn't thought of H2 permanent databases in the first place. I had the private temp-databases in my head as it was easier to think

of an environment without locking and transactions. When we consider shared temp-database and H2 permanent database, we need to do some

extra effort in ensuring that the direct access honors the locks.

Would this be used when we have a projection query that returns the primary key for a record (or list of primary keys for a list of records)?

AFAIK, projection queries are only for the permanent database (or not?). So this use-case falls into the scenario in which we implement direct access

for H2 permanent database, which I didn't had in mind at first.

Now that you put H2 direct access and projection queries in the same sentence, I am thinking even of PreselectQuery or AdaptiveQuery doing

projections on the temp-database and let EmbeddedFWDDriver do the hydration internally when needed. This may overlap with #7061. However,

this case is really new to me now and I don't have a strong understanding of it yet.

Just to make this clear, my initial idea was to resolve faster the temp-table record look-up by recid. If we encounter something like FIND tt WHERE

recid(tt) = 2, we avoid building an SQL, but directly retrieve the record from the primary key index.

#4 - 01/27/2023 07:58 AM - Alexandru Lungu

- % Done changed from 0 to 10

- Status changed from New to WIP

- Assignee set to Alexandru Lungu

I've done some consistent implementation for the FIND tt WHERE recid(tt) = 2 use-case. However, I am facing some limitations I am trying to

overcome:

(HYDARTION) We still need the hydration step as we convert the H2 record representation into our ORM representation. There is a lot of code

05/18/2024 2/24

https://proj.goldencode.com/issues/7061

for this in FWD, but it is highly coupled with ResultSet. Basically, our DataHandler interface forces the extraction of data through a ResultSet, so

using the JDBC interface. At this point, I tried to implement a more general mean of hydrating:

SQLHydrator used for hydrating records through a ResultSet. This is what we do now.

DirectAccesHydrator used for hydrating records through a H2 internal representation (org.h2.value.Value[] or org.h2.result.Row). This is

new to us, but is very similar to a ResultSet as we can retrieve certain kind of data through an index.

Because of the high complexity of refactoring all DataHandler in FWD, I am postponing DirectAccesHydrator. For now, I am wrapping the

org.h2.result.Row into a dummy ResultSet to benefit from the current hydration implementation in FWD.

(SELECT) There are H2 tables which have computed columns (for datetime fields, extents, indexed character fields, etc.).

The best is to skip selection of fields if we have no computed columns (much like we do with SQL wildcard in #7060)

For the other cases, we either avoid direct access or we send the fields to EmbeddedFWDDriver. From there, we can do the field selection

at the H2 level. However, this is the same thing an SQL does, so I won't expect much benefit from direct access only for some fields.

At best, we can implement the #7060 suggestion of adding a HIDDEN keyword for H2 temp-tables fields which shouldn't be accessed with

wildcard or direct access.

(WHERE) The index look-up we do inside H2 should rely on the fact that a (multiplex, recid) index exists (eventually as primary key).

For this matter, I have a question: is (multiplex, recid) always a primary key for our temp-tables in H2? I've seen some parts of FWD code

using "custom" primary keys based on converted code, but I am not sure we actually convert these 4GL primary keys as primary keys

inside H2. If the answer is no, do we always emit a (multiplex, recid) index, even if not primary?

I also have a bold idea for recid look-up. H2 uses internal unique keys (_ROWID_) for each table record, much like we do with recid. The

look-up using the _ROWID_ is extremely fast, as it simply represents the index of the record inside the scan index. We can do a very slim

recid to _ROWID_ hash mapping to benefit from this speed, but it we would still add a bit of overhead (on insert, delete and find by recid).

AFAIK, the recid we use for temp-records are sequence generated and should just satisfy the uniqueness property. Therefore, can we

consider that the temp-record recid is always equal to the internal H2 key? This way, the recid to _ROWID_ mapping is an identity mapping,

so WHERE recid(tt) = 2 means the second record from the scan index.

#5 - 02/01/2023 10:54 AM - Alexandru Lungu

I've finished implementing a simple mean of H2 direct access for RAQ with simple recid look-up. The results are fairly good, in the sense that my

custom test-cases work as expected and are usually faster with direct access. Sometimes, they are even with 60% faster than classical SQL access,

but I also have tests with only 10% improvement. Regarding my last comment:

HYDARTION: I simply wrap the rows into a dummy ResultSet to make use of FWD's compatibility to hydrate using ResultSet

SELECT: I only apply direct access for tables with no computed column

WHERE: I empirically discovered that (recid) is always the primary key of our temp-tables in H2; multiplex is irrelevant. This part can be

extended to cover other unique indexes.

On a large customer application, I have the following statistic for RAQ.execute, extracted with JMX:

Scen

ario

Descr

iption

Coun

t

Time

(ms)

Avg.

per

query

(ms)

% of

the

query

count

FF

Cach

e Hit

the

recor

d is

fetch

ed

from

the

sessi

on

cach

e

6400 252 0.03 15.95

%

FF the 6108 0 0 15.22

05/18/2024 3/24

https://proj.goldencode.com/issues/7060
https://proj.goldencode.com/issues/7060

Cach

e Hit

(No

Reco

rd)

cach

ed

result

is

FastF

indCa

che.N

O_R

ECO

RD

%

Direct

Acce

ss

the

dmo

is

manu

ally

found

using

the

recid

index

146 7 0.04 0.36

%

SQL

Quer

y

RAQ.

exec

uteIm

pl is

used

to

retrie

ve

the

dmo

2746

5

2790 0.1 68.45

%

This shows that Direct Access is very insignificant as number of calls. This is because most of the temp-tables have a custom primary-key. After

some debugging, I found out that there are lots of find queries (UNIQUE, FIRST, LAST or CAN-FIND) using the primary key fields in the where

clause.

Good news is that the average time spent on direct access is very low comparing with SQL query and is mostly comparable with a ffcache look-up. Of

course, this statement may be a bit off as only 146 queries use direct access and usually these are very simple. Best case scenario however is that

direct access is actually 2 times faster, so most of that 27465 can cut their performance time in half.

Last thing to note is #7088 also affects direct access. My statistic doesn't include the time to generate the activeBundle (used only by SQL Query).

Lazily computing the activeBundle may show a bigger gap between SQL and FFCache/Direct Access.

I am planning to extent my solution to also cover the cases in which all fields of an unique index (usually primary key) are used in the where clause

with "=". My target is >30% of the find queries to use direct access.

05/18/2024 4/24

https://proj.goldencode.com/issues/7088

#6 - 02/01/2023 12:54 PM - Eric Faulhaber

Alexandru Lungu wrote:

I've finished implementing a simple mean of H2 direct access for RAQ with simple recid look-up. The results are fairly good, in the sense that my

custom test-cases work as expected and are usually faster with direct access. Sometimes, they are even with 60% faster than classical SQL

access, but I also have tests with only 10% improvement.

This is a nice improvement!

Regarding my last comment:

HYDARTION: I simply wrap the rows into a dummy ResultSet to make use of FWD's compatibility to hydrate using ResultSet

Please also consider #6720; I don't yet know if lazy hydration should be applied to H2 embedded databases. I have to measure whether there is any

significant time spent with hydration in this case. I suspect it will be less expensive than with a remote database (where there is some translation

going on within the JDBC driver between the raw data coming over the wire and the Java types that need to be returned from ResultSet.getXXX()

calls). So, it may not be worth enabling lazy hydration for H2 embedded databases.

SELECT: I only apply direct access for tables with no computed column

Is this necessary if the table has a computed column, or only if a computed column is involved in the query?

WHERE: I empirically discovered that (recid) is always the primary key of our temp-tables in H2; multiplex is irrelevant. This part can be

extended to cover other unique indexes.

This is by design; there should never be more than one instance of a temp-table DMO with the same primary key (recid column), regardless of the

multiplex ID. This is done so that we can use the same code to uniquely identify a record for temp-tables and for persistent tables. For example, we

fetch from the session cache using a RecordIdentifier, which uses the primary key and not the multiplex ID.

One exception to this rule is if we have a copy of a DMO instance used for "housekeeping" (persistence internal) purposes, but that copy must never

be used as the primary DMO (i.e., never stored in the session cache or any record buffer).

On a large customer application, I have the following statistic for RAQ.execute, extracted with JMX:

Sce

nario

Des

cripti

on

Cou

nt

Time

(ms)

Avg.

per

quer

y

(ms)

% of

the

quer

y

coun

t

FF

Cac

he

Hit

the

reco

rd is

fetch

ed

from

the

sess

ion

cach

e

6400 252 0.03 15.9

5%

FF

Cac

he

Hit

(No

Rec

ord)

the

cach

ed

resul

t is

Fast

Find

Cac

he.N

O_R

ECO

RD

6108 0 0 15.2

2%

05/18/2024 5/24

https://proj.goldencode.com/issues/6720

Dire

ct

Acce

ss

the

dmo

is

man

ually

foun

d

usin

g the

recid

inde

x

146 7 0.04 0.36

%

SQL

Quer

y

RAQ

.exe

cuteI

mpl

is

used

to

retri

eve

the

dmo

2746

5

2790 0.1 68.4

5%

This shows that Direct Access is very insignificant as number of calls. This is because most of the temp-tables have a custom primary-key. After

some debugging, I found out that there are lots of find queries (UNIQUE, FIRST, LAST or CAN-FIND) using the primary key fields in the where

clause.

Please clarify what is meant by "the primary key fields" in this context. Do you mean the surrogate primary key (i.e., the column recid), or other fields

of the temp-table that comprise unique indices defined in the 4GL code?

Good news is that the average time spent on direct access is very low comparing with SQL query and is mostly comparable with a ffcache

look-up. Of course, this statement may be a bit off as only 146 queries use direct access and usually these are very simple. Best case scenario

however is that direct access is actually 2 times faster, so most of that 27465 can cut their performance time in half.

Please help me understand the intention here. Are you saying the idea is to apply this technique more generally, for some or all of the

RAQ.executeImpl cases?

Last thing to note is #7088 also affects direct access. My statistic doesn't include the time to generate the activeBundle (used only by SQL

Query). Lazily computing the activeBundle may show a bigger gap between SQL and FFCache/Direct Access.

I am planning to extent my solution to also cover the cases in which all fields of an unique index (usually primary key) are used in the where

clause with "=". My target is >30% of the find queries to use direct access.

Is this the answer to my question above about the RAQ.executeImpl cases? Again, I am a bit confused by your description "all fields of an unique

index (usually primary key)" in terms of what you mean by "primary key" in this context. Please clarify.

Nice work!

05/18/2024 6/24

https://proj.goldencode.com/issues/7088

#7 - 02/01/2023 01:09 PM - Greg Shah

I empirically discovered that (recid) is always the primary key of our temp-tables in H2; multiplex is irrelevant.

I don't understand this part. I admit I'm surprised that the same recid cannot be present with more than one of the multiplex id. That doesn't make

sense to me since we should have cases in old 4GL code where we have to copy a temp-table that is passed in to a procedure or one that is copied

back to the caller. In such cases I would have expected the recid to be duplicated and the multiplex id to be important.

This shows that Direct Access is very insignificant as number of calls. This is because most of the temp-tables have a custom primary-key. After

some debugging, I found out that there are lots of find queries (UNIQUE, FIRST, LAST or CAN-FIND) using the primary key fields in the where

clause.

Does -rereadnolock (see #2175, #2176) factor in to this? I'm not sure if it is only for cross-session usage on permanent database tables.

#8 - 02/01/2023 01:15 PM - Eric Faulhaber

Alexandru, one other thing to consider, which I suppose you've already noticed: we don't actually create unique indices (except for the surrogate

primary key index) in H2, when representing temp-table indices which were defined as unique in the legacy code. This is to allow us to flush records

to the database "early" (i.e., before they pass unique constraint validation) without a SQL error, in order that they can be found by a query which

expects them to be available. Unique constraints ultimately are enforced by the persistence validation code in the Validation class, rather than by H2.

#9 - 02/01/2023 01:25 PM - Eric Faulhaber

Greg Shah wrote:

I empirically discovered that (recid) is always the primary key of our temp-tables in H2; multiplex is irrelevant.

I don't understand this part. I admit I'm surprised that the same recid cannot be present with more than one of the multiplex id. That doesn't

make sense to me since we should have cases in old 4GL code where we have to copy a temp-table that is passed in to a procedure or one that

is copied back to the caller. In such cases I would have expected the recid to be duplicated and the multiplex id to be important.

A copy in a separate logical or physical temp-table should have a distinct primary key (recid) value. This is the intent, at least. If our implementation

differs, this could be a problem.

This shows that Direct Access is very insignificant as number of calls. This is because most of the temp-tables have a custom primary-key.

After some debugging, I found out that there are lots of find queries (UNIQUE, FIRST, LAST or CAN-FIND) using the primary key fields in

the where clause.

05/18/2024 7/24

https://proj.goldencode.com/issues/2175
https://proj.goldencode.com/issues/2176

Does -rereadnolock (see #2175, #2176) factor in to this? I'm not sure if it is only for cross-session usage on permanent database tables.

This should only apply to permanent tables where records can be read NO-LOCK and held in one session and become stale due to being changed

simultaneously in another session. It seems this was meant to be a way to be "optimistic" (i.e., not holding a SHARE lock on a record). I think this is

obsolete with our DMO versioning. Essentially, we always behave as if -rereadnolock was active.

#10 - 02/01/2023 01:26 PM - Eric Faulhaber

Eric Faulhaber wrote:

Alexandru, one other thing to consider, which I suppose you've already noticed: we don't actually create unique indices (except for the surrogate

primary key index) in H2, when representing temp-table indices which were defined as unique in the legacy code.

To be clear: we create the index, it is just not marked unique.

#11 - 02/01/2023 01:29 PM - Greg Shah

A copy in a separate logical or physical temp-table should have a distinct primary key (recid) value. This is the intent, at least. If our

implementation differs, this could be a problem.

You're saying that in the 4GL these have separate recid values when a temp-table is passed as a parameter?

I think this is obsolete with our DMO versioning. Essentially, we always behave as if -rereadnolock was active.

Can you explain this a bit? What do you mean by DMO versioning?

Considering that the default in OpenEdge is for this to be turned off, we may be missing an opportunity for optimization here. In fairness, most of the

customer applications we have seen do use -rereadnolock but not all of them do.

05/18/2024 8/24

https://proj.goldencode.com/issues/2175
https://proj.goldencode.com/issues/2176

#12 - 02/02/2023 05:51 AM - Alexandru Lungu

Please also consider #6720; I don't yet know if lazy hydration should be applied to H2 embedded databases. I have to measure whether there is

any significant time spent with hydration in this case. I suspect it will be less expensive than with a remote database (where there is some

translation going on within the JDBC driver between the raw data coming over the wire and the Java types that need to be returned from

ResultSet.getXXX() calls). So, it may not be worth enabling lazy hydration for H2 embedded databases.

My implementation uses SQLQuery.hydrateRecord to get the DMO based on the H2 internal values, so any lazy-hydration beyond hydrateRecord still

holds. However, I always use the full row structure of the target DMO after H2 direct access, so all fields will be hydrated. Right now, lazy-hydration is

detected when converting FQL to SQL, which is too late, as direct access happens before FQL generation.

Is this necessary if the table has a computed column, or only if a computed column is involved in the query?

If the table has a computed column, we can't use direct access. I don't have a "select list" mechanism when doing direct access; I purely extract

a reference to the searched row inside the primary key index. If the table has a computed column, then I would need to tell H2 to cherry-pick the

values I am interested in: the ones used for hydration. Such "extra" features are to be avoided in direct access. Having too many will introduce

overhead - one that we want to avoid when using SQL in the first place.

Please clarify what is meant by "the primary key fields" in this context. Do you mean the surrogate primary key (i.e., the column recid), or other

fields of the temp-table that comprise unique indices defined in the 4GL code?

Other fields of the temp-table that comprise unique indices defined in the 4GL code are used in the find where clause. I have many scenarios

like:

define temp-table tt field myid as int index idx1 AS UNIQUE PRIMARY f1 ASCENDING.

[...]

find tt where myid = x. // the business logic doesn't rely on recid, but on a custom unique primary-key

[...]

I understand the confusion here. 4GL tables always have a primary key (implicit or explicit). By "custom" primary key, I meant an explicit unique

primary index that has the same role as recid in the business logic. I've seen multiple times a key field that is indexed using an UNIQUE PRIMARY

INDEX. Most of the FIND queries use where tt.key = ? instead of where recid(tt) = ?. Other examples include multi-field unique primary indexes

(where tt.last-name=? and tt.first-name=?).

Please help me understand the intention here. Are you saying the idea is to apply this technique more generally, for some or all of the

RAQ.executeImpl cases?

"For some" rather than "for all". Note that the table also includes RAQ for persistent buffers, which are out of this task's scope.

I have the safest possible implementation right now and there are conditions which can be relaxed. I am implementing the following one by one until

we have a relevant % for direct access.

I only consider find queries in which the where clause is exactly tt.recid = ? (with or without query parameter). This can be extended for all

"unique" indexes, not only recid.

I only consider tables without computed-columns (date-time, extent or case-insensitive char fields). Once we have access into H2, we can do

some magic to let H2 know which are the computed columns, so it can automatically do the cherry-picking I was mentioning above.

I only target RAQ.execute with FIRST/LAST/UNIQUE keys. Technically, direct access can be also used directly in Loader.load or single-table

Adaptive/Preselect queries.

I always use direct acess only in single-table use-cases.

Direct access can have other APIs (e.g. for FIND without WHERE, FIND over non-unique index).

Alexandru, one other thing to consider, which I suppose you've already noticed: we don't actually create unique indices (except for the surrogate

primary key index) in H2, when representing temp-table indices which were defined as unique in the legacy code. This is to allow us to flush

records to the database "early" (i.e., before they pass unique constraint validation) without a SQL error, in order that they can be found by a

query which expects them to be available. Unique constraints ultimately are enforced by the persistence validation code in the Validation class,

rather than by H2.

To be clear: we create the index, it is just not marked unique.

05/18/2024 9/24

https://proj.goldencode.com/issues/6720

This information was latent somewhere in my mind. This is OK as I can pick the right index to do the look-up (even if not unique). However, I need a

bit of feedback on the following scenario:

there are two records with the same unique key inside the database (as one of them wasn't validated yet by FWD).

I execute something like FIND tt WHERE tt.key = ?

At this point, is there a resolution of which of the two records with the same unique key is retrieved. Or the FIND statement will trigger validation,

so the database look-up won't be done anyways?

If we use some resolution to choose between the two records, the direct access needs to be aware of that, so it can replicate.

You're saying that in the 4GL these have separate recid values when a temp-table is passed as a parameter?

Just tested in 4GL with two procedures:

First one creates a record that has id 2304. It uses its temp-table as an input-output parameter for the second procedure, where the record now

has id 4352. A new record in the second procedure is assigned 4353. Returning into the first procedure I have 2305 and 2306.

The conclusion is that recid is reassigned when used as parameter (in a multiplexed table in our case).

It is not clear if the set of ids from the first table can ever overlap the set of ids from the second table. However, it is clear that they are not

copied, but reassigned. Therefore, this is not a feature one customer can ever rely on IMO.

Does -rereadnolock (see #2175, #2176) factor in to this? I'm not sure if it is only for cross-session usage on permanent database tables.

I need to do some reading first. On the surface, it looks like a permanent database setting, but I will do some digging for the temp-table case.

#13 - 02/02/2023 09:54 AM - Greg Shah

I only consider tables without computed-columns (date-time, extent or case-insensitive char fields)

In regard to extents, we are moving to "expanded" mode for all cases in the future. Does that open up these tables for direct usage?

In regard to case-insensitive char fields, nearly 100% of char fields in the 4GL are treated case-insensitively. Does this mean we are excluding any

table that has even one field that is just a normal case-insensitive character type? That seems like just about every table would have such a thing.

05/18/2024 10/24

https://proj.goldencode.com/issues/2175
https://proj.goldencode.com/issues/2176

#14 - 02/02/2023 11:46 AM - Alexandru Lungu

Greg Shah wrote:

I only consider tables without computed-columns (date-time, extent or case-insensitive char fields)

In regard to extents, we are moving to "expanded" mode for all cases in the future. Does that open up these tables for direct usage?

I am aware of that and I think this is close to acceptable for direct access. I need to do a test to ensure this works; the main requirement is to have all

extents in ascending order as a contiguous segment, which I think is already happening.

In regard to case-insensitive char fields, nearly 100% of char fields in the 4GL are treated case-insensitively. Does this mean we are excluding

any table that has even one field that is just a normal case-insensitive character type? That seems like just about every table would have such a

thing.

I may have misinterpreted FWD's behavior. I have seen multiple fields like "some_field" and "isome_field" in the database; basically each character

field is doubled: a native one and an upper-case one. This affects direct access, because it can't make a distinction between the native "some_field"

and the computed "isome_field" yet. However, this only holds for indexed character fields and not case-insensitive ones; I need to double-check.

Anyways, this is not fatal for direct access. If there is a low rate exactly because of computed columns, I can easily mark these columns, such that the

direct access can identify them.

#15 - 02/02/2023 11:56 AM - Eric Faulhaber

Alexandru Lungu wrote:

I may have misinterpreted FWD's behavior. I have seen multiple fields like "some_field" and "isome_field" in the database; basically each

character field is doubled: a native one and an upper-case one. This affects direct access, because it can't make a distinction between the native

"some_field" and the computed "isome_field" yet. However, this only holds for indexed character fields and not case-insensitive ones; I need to

double-check.

Yes, the computed columns exist for those character columns which we need to index (whether case-sensitive or case-insensitive) in a

4GL-compatible way (i.e., upper/rtrim'd for case-insensitive fields, or just rtrim'd for case-sensitive fields). The computed columns exist only because

H2 (like Maria and SQL Server and unlike PostgreSQL) does not support expressions/functions in index definitions, so the computed columns are

defined with those functions applied, and then referenced in indices. If a field is not indexed, it will not have an associated, computed column.

05/18/2024 11/24

#16 - 02/02/2023 03:47 PM - Ovidiu Maxiniuc

Greg Shah wrote:

You're saying that in the 4GL these have separate recid values when a temp-table is passed as a parameter?

It happened that I was working on fixing a flaw of my implementation of the expanded extent fields (related to fast-copy) and I tested this. It turned out

that in 4GL the answer is yes and no. The records will keep the recids when invoking an internal procedure and will have new (intermediary) recids

when invoking an external procedure. I get an output like this:

caller1: 10496 9 yes no ? master

caller2: 10497 -9 ? yes no master

internal1: 10496 9 yes no ? master

internal2: 10497 -9 ? yes no master

external1: 8448 9 yes no ? master

external2: 8449 -9 ? yes no master

The caller creates two records and calls two identical procedures, one internal and one external.

I guess FWD does the same, but since the recids restart at 1, it is difficult to say for sure without further investigations.

Alexandru Lungu wrote:

Greg Shah wrote:

In regard to extents, we are moving to "expanded" mode for all cases in the future. Does that open up these tables for direct usage?

I am aware of that and I think this is close to acceptable for direct access. I need to do a test to ensure this works; the main requirement is to

have all extents in ascending order as a contiguous segment, which I think is already happening.

Yes, the expanded properties are 'inlined' replacing the original property. For example:

define temp-table tt1 field f1 as date field f2 as int extent 5 field f3 as char

will be use a SQL table created as:

create table tt1 (recid bigint not null, f1 date, f2_1 integer, f2_2 integer, f2_3 integer, f2_4 integer, f2_5

 integer, f3 varchar)

05/18/2024 12/24

#17 - 02/03/2023 10:34 AM - Alexandru Lungu

I extended my solution to cover all unique indexes. Most of the processing is done in FQLPreprocessor to identify where clauses like tt.tenant = ? and

tt.key = 2 (I will call them "unique finds"). If all clauses use = and cover strictly all fields of an unique index, then direct access is used. I profiled the

overhead of collectPropertyMatches (43ms) and checkUniqueFind (23ms). The total time is low considering that only 4589 preprocessors are actually

created (for all ~40.00 find queries). Please note that I enabled collectPropertyMatches for all queries (not only informational). Please consider that

such preprocessing step can help other FWD parts as well (much like isFindByRowid does).

I've redone my test with the new preprocessing step.

Scenario Description Count Time (ms) Avg. per query (ms) % of the query count

Direct Access (recid) the record is retrieved

from H2

146 7 0.04 0.36%

Direct Access

("unique finds")

the record is retrieved

from H2

56 2 0.03 0.14%

Again, the count is not considerable. The new additions (56) are simply some uniquely indexed handle fields which are rarely accessed. I added some

JMX and out of that ~27,000 find queries using SQL, ~12,500 are in fact "unique finds". However, the condition that doesn't allow these ~12,500 to

use direct access is the "can't use direct access with tables that have computed columns" constraint. Out of these, ~7,000 have indexed character

columns. I am planning to target this issue next.

Yes, the computed columns exist for those character columns which we need to index (whether case-sensitive or case-insensitive) in a

4GL-compatible way (i.e., upper/rtrim'd for case-insensitive fields, or just rtrim'd for case-sensitive fields). The computed columns exist only

because H2 (like Maria and SQL Server and unlike PostgreSQL) does not support expressions/functions in index definitions, so the computed

columns are defined with those functions applied, and then referenced in indices. If a field is not indexed, it will not have an associated,

computed column.

My concern right now isn't that we have an extra column to handle this use-case, but the fact that I need to remove it "manually" from the values array

before returning to FWD. Further, this is not a performance issue, but I can't identify these computed columns (checking that they start with "i" is far

from safe). From this point:

we can do some H2 internal changes to adapt to our use-case: implement expression/function in index definitions (not trivial) or force all

character indexed fields inside H2 to be compared using upper-case. Please let me know if we can go ahead with any of these two. I prefer the

second one due to less overhead and easier/cleaner implementation. If so, my next suggestion won't be needed.

also useful for #7060, consider a COMPUTED or HIDDEN keyword for table columns which are not meant to be retrieved using direct access or,

in the case of #7060, with wildcard.

05/18/2024 13/24

https://proj.goldencode.com/issues/7060
https://proj.goldencode.com/issues/7060

#18 - 02/03/2023 04:20 PM - Ovidiu Maxiniuc

Actually the prefixes for the computed columns in H2 dialect are __i and __s (for i gnore casing and case- s ensitive data character types). We

already use P2JH2Dialect.extractColumnName() to extract back the original column name from an index metadata.

I agree that usually it's a risky method to check the prefix this way but, normally, there should be no collisions. The double underscore prefix was

intentionally selected for this reason.

As you noted, these computed columns do not need to be fetched from the SQL. They are only used as part of the index to help sorting the (null)

values the same way as in 4GL.

#19 - 02/03/2023 05:17 PM - Eric Faulhaber

Ultimately, we create the SQL forms of the column names. So, we can use whatever we want as an identifier, if we find the prefixes __i or __s are not

distinctive enough (though I think they are, as I don't think we ever create "normal" columns with leading underscores for temp-tables, do we?).

They are only used as part of the index to help sorting the (null) values the same way as in 4GL.

I assume they are also used to "bake in" the [upper]/rtrim as well, correct?

#20 - 02/03/2023 07:32 PM - Ovidiu Maxiniuc

Eric Faulhaber wrote:

Ultimately, we create the SQL forms of the column names. So, we can use whatever we want as an identifier, if we find the prefixes __i or __s

are not distinctive enough (though I think they are, as I don't think we ever create "normal" columns with leading underscores for temp-tables, do

we?).

No, we do not.

In the absence of a SQL option to SELECT * EXCEPT __ifield1, __sfield2 FROM... I think we can analyse the ratio of computed columns before

sending the query to execute and, if there are only a few or none indexed strings we can use the * and just ignore these additional fields when the

record is rehydrated. Otherwise we risk doubling the amount of data fetched from SQL so we probably better to explicitly specify each column in the

query as we do now.

They are only used as part of the index to help sorting the (null) values the same way as in 4GL.

I assume they are also used to "bake in" the [upper]/rtrim as well, correct?

Yes, sorry, my mistake. When the DDLs are constructed and everywhere a specific index is required (sorting phrases). The order of null values is

dictated by nulls last on definition of each index component.

05/18/2024 14/24

#21 - 02/06/2023 04:43 AM - Alexandru Lungu

Actually the prefixes for the computed columns in H2 dialect are __i and __s (for i gnore casing and case- s ensitive data character types). We

already use P2JH2Dialect.extractColumnName() to extract back the original column name from an index metadata.

Oh right! I misinterpreted the CC_PREFIX addition.

In the absence of a SQL option to SELECT * EXCEPT __ifield1, __sfield2 FROM... I think we can analyse the ratio of computed columns before

sending the query to execute and, if there are only a few or none indexed strings we can use the * and just ignore these additional fields when

the record is rehydrated. Otherwise we risk doubling the amount of data fetched from SQL so we probably better to explicitly specify each

column in the query as we do now.

This makes sense; the weak spots of #7060 are lazy-hydration and the computed columns. Once we decide to filter-out these computed columns in

FWD (for low-ratio), lazy-hydration is the last to trouble #7060.

force all character indexed fields inside H2 to be compared using upper-case. Please let me know if we can go ahead with any of these two.

What is you input on this? On my second thought, this can cover more use-cases, not only indexed char fields.

We can use something similar to the native type from PostgreSQL (as in #6837, citext) as a native data type in FWD-H2. In fact, H2 already has

VARCHAR_IGNORECASE and VARCHAR_CASESENSITIVE as native types. Even if they may not fully fit our FWD use-cases out-of-the-box, we

can do some tuning. If RTRIM is something we worry about, we can augment the field definition with RTRIM keyword (column RTRIM

VARCHAR_IGNORECASE).

Anyways, we should agree on a single way of doing this. Checking __i and __s are going to be irrelevant for temp-dabase, if we use

VARCHAR_IGNORECASE. The same applies for #7060 using *. If we plan to go with VARCHAR_IGNORECASE, I will do a separate issue for it and

start working on it, before moving on with #7062.

05/18/2024 15/24

https://proj.goldencode.com/issues/7060
https://proj.goldencode.com/issues/7060
https://proj.goldencode.com/issues/6837
https://proj.goldencode.com/issues/7060
https://proj.goldencode.com/issues/7062

#22 - 02/09/2023 10:42 AM - Alexandru Lungu

Alexandru Lungu wrote:

In the absence of a SQL option to SELECT * EXCEPT __ifield1, __sfield2 FROM... I think we can analyse the ratio of computed columns

before sending the query to execute and, if there are only a few or none indexed strings we can use the * and just ignore these additional

fields when the record is rehydrated. Otherwise we risk doubling the amount of data fetched from SQL so we probably better to explicitly

specify each column in the query as we do now.

This makes sense; the weak spots of #7060 are lazy-hydration and the computed columns. Once we decide to filter-out these computed

columns in FWD (for low-ratio), lazy-hydration is the last to trouble #7060.

Just found out that H2 supports INVISIBLE keyword all along (for the exact purpose of #7060). Now, I generate it for computed columns in H2 and

use it to filter-out computed columns for direct access. It works just fine. I am moving on with this issue.

force all character indexed fields inside H2 to be compared using upper-case. Please let me know if we can go ahead with any of these two.

What is you input on this? On my second thought, this can cover more use-cases, not only indexed char fields.

We can use something similar to the native type from PostgreSQL (as in #6837, citext) as a native data type in FWD-H2. In fact, H2 already has

VARCHAR_IGNORECASE and VARCHAR_CASESENSITIVE as native types. Even if they may not fully fit our FWD use-cases out-of-the-box,

we can do some tuning. If RTRIM is something we worry about, we can augment the field definition with RTRIM keyword (column RTRIM

VARCHAR_IGNORECASE).

I created #7108 for further investigation. This is in close relation with #6837, but dedicated to H2.

#23 - 02/10/2023 08:22 AM - Alexandru Lungu

- % Done changed from 10 to 70

05/18/2024 16/24

https://proj.goldencode.com/issues/7060
https://proj.goldencode.com/issues/7060
https://proj.goldencode.com/issues/7060
https://proj.goldencode.com/issues/6837
https://proj.goldencode.com/issues/7108
https://proj.goldencode.com/issues/6837

I've redone the tests with direct access:

Computed columns are now marked as invisible in H2.

Before returning from the H2 embedded FWD driver, the invisible columns are removed.

Direct access is not yet applied for tables with extents. Testing this now!

Scenario Description Count Time (ms) Avg. per query (ms) % of the query count

FF Cache Hit the record is fetched

from the session

cache

7273 247 0.03 17.75%

FF Cache Hit (No

Record)

the cached result is

FastFindCache.NO_R

ECORD

6777 0 0 16.53%

Direct Access

(Unique)

the dmo is manually

found using an unique

index

12718 143 0.01 31.03%

Direct Access the dmo is manually

found using the recid

index

436 3 0.006 1.06%

SQL Query RAQ.executeImpl is

used to retrieve the

dmo

13770 1601 0.11 33.60%

This test is based on the same POC as the one in #7062-5. The number of direct access find queries increased drastically and the avg. time per

query is way lower.

I will test how direct access behaves with extent fields. Afterwards, I am planning to create a 7062_h2 branch to commit these changes for review.

Fortunately, I will be able to integrate this change into #7058 track in time.

#24 - 02/10/2023 09:54 AM - Alexandru Lungu

- % Done changed from 70 to 90

- File direct_access.patch added

I committed 7062a_h2/rev. 9 the changes to H2 to allow direct access.

There is a patch here on the changes required by FWD. Note that the changes are highly dependent on having a built version of H2 using

7062_h2/rev. 9, as it uses internal structures from H2. Please review.

I am planning to make some final changes to 7062a (javadoc and small performance changes), before merging.

05/18/2024 17/24

https://proj.goldencode.com/issues/7062#note-5
https://proj.goldencode.com/issues/7058

#25 - 02/15/2023 06:53 AM - Alexandru Lungu

Alexandru Lungu wrote:

I am planning to make some final changes to 7062a (javadoc and small performance changes), before merging.

Rebased 7062a_h2, committed javadoc and some minor changes. I am doing a quick final profiling step right now before merging into FWD-H2 trunk.

#26 - 02/16/2023 09:07 AM - Alexandru Lungu

- Status changed from WIP to Review

- % Done changed from 90 to 100

Merged 7062a_h2 into trunk after adding support for some extra data-types from FWD (object as resourceId and decimal as BigDecimal). FWD-H2

trunk is now at rev. 11.

Created 7062a branch for FWD changes and committed rev. 14485 including an updated version of the #7062-24 patch.

#27 - 02/24/2023 06:58 AM - Alexandru Lungu

I merged the changes from 7062a into 7026a - the branch names are quite confusing :)

I have good results, similar to what I expected from #7062-23 in total.

However, I've done some debugging to identify where we still spend time in direct-access. Quite surprising, some calls to

DirectAccessHelper.hydrateFromResultSet were hitting the session cache, so sometimes the whole direct-access code is used only to retrieve the

recid to be used as a cache key. This was still happening before direct-access, because FWD wasn't aware of the recid before executing the SQL.

The usage of the cache was just to bypass hydration, even if the full-record was already retrieved from H2. Please note that we don't do projection

queries for temp-tables.

Now that we have direct access, we can return the recid and a supplier function to obtain the result-set if required. Therefore, we avoid building the

result-set if the session cache is hit. If the record is not in cache, we can call the supplier and hydrate from result-set. I don't expect a huge

improvement, because direct-access is no longer copying values from internal H2 structures to result-set anyways. On the other hand, this way we

can avoid a for loop of all columns (usually tens, but with extent denormalization, this can mean hundreds).

I will need to check how many times such scenario is encountered.

#28 - 02/27/2023 07:47 AM - Constantin Asofiei

Alexandru, the changes in RandomAccessQuery will not set the lock properly on a record found in the cache:

+ Record dmo = null;

+

+ if (lockType == null)

+ {

05/18/2024 18/24

https://proj.goldencode.com/issues/7062#note-24
https://proj.goldencode.com/issues/7062#note-23

+ lockType = this.lockType;

+ }

+

+ if (fqlPreprocessor.isFindByRowid())

+ {

+ Session session = buffer.getSession(true);

+ try

+ {

+ dmo = session.getCached(buffer.getDmoInfo().getImplementationClass(), fqlPreprocessor.getFindB

yRowid(values));

+ if (dmo != null)

+ {

+ finalizeFind(lockType, dmo, () -> buffer.errorNotOnFile(), true);

+ }

+ }

+ catch (PersistenceException e)

+ {

+ // fall-back to execute method

+ }

+ }

+

+ if (dmo == null)

+ {

+ activateUnique();

+ dmo = execute(values, lockType, true, true);

+ }

+

finalizeFind is not calling persistence.lock, it just updates the internal RecordBuffer.pinnedLocks. I think the correct code for a cached record should

be this:

 if (dmo != null)

 {

 // if we get a hit, get the requested lock with RecordLockContext

 RecordLockContext lockCtx = buffer.getRecordLockContext();

 lockCtx.lock(new RecordIdentifier<>(buffer.getTable(), dmo.primaryKey()), lockType);

 }

Also, original version is calling finalizeFind twice.

05/18/2024 19/24

#29 - 02/27/2023 07:58 AM - Alexandru Lungu

This was a last minute modification and the LOCK_MODE 0 from H2 was stuck in my head. It struck me at some point that this can work for

persistent databases too and I let it be this way for any arbitrary RAQ.

Your suggestion from #7062 fits - is the same procedure ffCache uses, so I guess is the right way to do it. Please let me know if I can commit this

change to 7026a?

#30 - 02/27/2023 08:01 AM - Alexandru Lungu

=== modified file 'src/com/goldencode/p2j/persist/RandomAccessQuery.java'

--- src/com/goldencode/p2j/persist/RandomAccessQuery.java 2023-02-24 12:36:40 +0000

+++ src/com/goldencode/p2j/persist/RandomAccessQuery.java 2023-02-27 13:00:02 +0000

@@ -2326,15 +2326,17 @@

 lockType = this.lockType;

 }

- if (fqlPreprocessor.isFindByRowid())

+ if (fqlPreprocessor.isFindByRowid() && whereExpr == null && isSimpleQuery())

 {

 Session session = buffer.getSession(true);

 try

 {

- dmo = session.getCached(buffer.getDmoInfo().getImplementationClass(), fqlPreprocessor.getFindB

yRowid(values));

+ Class<? extends Record> dmoClass = buffer.getDmoInfo().getImplementationClass();

+ dmo = session.getCached(dmoClass, fqlPreprocessor.getFindByRowid(values));

 if (dmo != null)

 {

- finalizeFind(lockType, dmo, () -> buffer.errorNotOnFile(), true);

+ RecordLockContext lockCtx = buffer.getRecordLockContext();

+ lockCtx.lock(new RecordIdentifier<>(buffer.getTable(), dmo.primaryKey()), lockType);

 }

 }

 catch (PersistenceException e)

I will also allow such optimization for queries without client-where, joins and external buffers - keep it simple.

#31 - 02/27/2023 08:04 AM - Constantin Asofiei

Alexandru Lungu wrote:

[...]

I will also allow such optimization for queries without client-where, joins and external buffers - keep it simple.

05/18/2024 20/24

https://proj.goldencode.com/issues/7062

I think it looks OK, please commit it.

Please do a more thorough review of the changes in 7026a revs. 14500, 14501, 14503, 14504, to cleanup the code (at least for

RandomAccessQuery class fields are defined out-of-place, they are missing javadoc, etc).

#32 - 02/27/2023 09:24 AM - Alexandru Lungu

Done, committed 7026a/rev. 14506.

#33 - 02/28/2023 02:49 AM - Alexandru Lungu

Committed 7026a/14507 removing some tracing variables - missed them on my first check.

#34 - 03/07/2023 08:44 AM - Alexandru Lungu

I've done the performance test on another large customer application. I've added more details to cover temp vs persistent performance + direct

access vs SQL on the exact same queries. I have the same scale as the results from #7062-5 and a slight worse performance than #7062-23, but still

direct-access shows a 3 times improvement. The tests include #7143-38 fix.

Scenario Description Count Time (ms) Avg. per query (ms) % of the query count

FF Cache Hit the record is fetched

from the session

cache

1978 50 0.025 20.9%

FF Cache Hit (No

Record)

the cached result is

FastFindCache.NO_R

ECORD

214 0 0 2.26%

Direct Access * the dmo is manually

found using an unique

index

2638 76 0.028 27.9% *

SQL Query on Unique

*

the dmo is found

using SQL, but could

have used

direct-access

2638 230 0.087 27.9% *

Other SQL Query on

Temporary

the temp dmo is found

using SQL

3077 238 0.077 32.62%

Other SQL Query on

Persistent

the persistent dmo is

found using SQL

1523 1010 0.663 16.15%

The results marked with * are done on the same queries; RAQ.executeImpl done both direct-access and SQL query independently. "Other" SQL

queries are the one which don't satisfy the direct-access requirements.

I think it is an important result showing that two different large applications have ~30% of their RAQ use direct-access, which consistently runs at least

3 times faster.

05/18/2024 21/24

https://proj.goldencode.com/issues/7062#note-5
https://proj.goldencode.com/issues/7062#note-23

#35 - 03/07/2023 09:10 AM - Greg Shah

Do these results differ from 7026a rev 14503?

#36 - 03/07/2023 09:28 AM - Alexandru Lungu

The results were obtained using 7026a/rev. 14518. I don't have some results for 7026a/rev. 14503 for this specific application. #7062-23 were done

with a very close version as rev. 14503, but were on a different application.

Now, 7026a was rebased, so the former rev. 14503 is the new rev. 14510. Therefore, it is hard to have an exact profiling of the former 7026a/rev.

14503 without accounting the rebased changes.

I don't expect a different result with rev. 14510 comparing to rev. 14518 anyway. The only related change is rev. 14518, which honored record

nursery. The record nursery should be accounted both in direct-access and SQL queries. Note that I extracted the record nursery outside the profilers

from #7062-34, to get only the execution times of the queries alone.

I've profiled the record nursery code right now, in case of direct-access, and it takes 12ms in that 2638 calls.

#37 - 03/14/2023 08:03 AM - Alexandru Lungu

Moved the isFindByRowid short-circuit from #7062-30 to RAQ.execute. This is because isSimpleQuery was always returning false, due to the fact that

there was no active bundle. This way, the optimization is truly triggered and it covers more scenarios (including FIRST and LAST). I've worked with

some MBeans and 100% (on a large customer project with ~500 of such hits) of the fqlPreprocessor.isFindByRowid() && whereExpr == null &&

isSimpleQuery() cases are actually finding the dmo is the session cache. Committed to 7026b/rev. 14503.

#38 - 03/16/2023 11:31 AM - Alexandru Lungu

Response to #7026-97

Constantin Asofiei wrote:

Alexandru, I'm not sure where to post this. The changes for DirectAccessDriver can end up with a ResultSet instance with a NULL

ResultSet.getStatement(). This getStatement() is being used in a few places in FWD, one of them being QueryProfilerJMX.updateCacheHits.

You will see this NPE if you try to enable the JMX beans in e.g. VisualVM and run the performance tests.

Makes sense, as QueryProfilerJMX is grouping the queries with the same SQL. The issue is that a direct-access query is not using an SQL! I wasn't

very fond of a dummy JDBCResultSet to deliver results from direct-access in the first place; maybe the best way was to have a more general

hydration technique, which is based on a FWD results provider, not explicitly on java.sql.ResultSet. But at this point, the DataHandler logic is already

too entangled with our hydration.

Fix 1: check if a statement exists. If it doesn't presume empty string is the "SQL" of a direct-access.

Fix 2: create a stub JDBCStatement for the result-set returned by direct-access. This way, we can build an SQL when required (lazily), based on the

direct-access API called.

How do we fix this? Please note that there are cases of Connection conn = rs.getStatement().getConnection(); for BlobType.readProperty() and

ClobType.readProperty(), with the rest being used like ResultSet.getStatement().toString(), from QueryProfilerJMX.

For BlobType and ClobType, the statement is required to retrieve the connection and modify the auto-commit.

The only fix I see here: use a stub JDBCStatement for the result-set. Allow it to return the connection if needed.

05/18/2024 22/24

https://proj.goldencode.com/issues/7062#note-23
https://proj.goldencode.com/issues/7062#note-34
https://proj.goldencode.com/issues/7062#note-30

#39 - 03/16/2023 11:50 AM - Constantin Asofiei

Go with option 2 - on getStatement() call, lazily create the java.sql.Statement instance which has all the entire JDBC state (not just query string or

JDBC Connection). I don't want to break the JDBC semantics for ResultSet.getStatement().

#40 - 03/17/2023 08:48 AM - Alexandru Lungu

Created 7062b_h2 for further work on H2.

Committed 7062b_h2/rev. 13 - generating a dummy jdbc statement for each result-set of direct-access. The generation of one statement is not that

costly. H2 itself doesn't do much when generating a simple statement; it hooks it with a connection and that is all. Unless it is prepared, H2 doesn't

store the sql inside the statement. JdbcStatement.toString returns by default the id of the statement.

#41 - 03/20/2023 09:54 AM - Alexandru Lungu

I also committed an optimization for #7062-27 (7062b_h2/rev. 14 and 7026b/rev. 14512), including a mean of lazily computing the result-set. If the

provided record is cached (by recid), avoid computing the result set from H2. This avoids extracting the data from the tables and place them into a

separate array to be served by the result-set. This shows a -0.2% improvement.

#42 - 04/20/2023 07:12 AM - Alexandru Lungu

- Status changed from Review to Test

This was merged in trunk as rev. 14523 and can be closed.

#43 - 05/29/2023 08:41 AM - Constantin Asofiei

Alexandru, we need NPE protection here:

java.lang.NullPointerException

 at org.h2.embedded.FWDDirectAccessDriver.getUniqueRow(FWDDirectAccessDriver.java:131)

 at com.goldencode.p2j.persist.orm.DirectAccessHelper.findByUniqueIndex(DirectAccessHelper.java:152)

 at com.goldencode.p2j.persist.RandomAccessQuery.executeDirectAccess(RandomAccessQuery.java:4908)

 at com.goldencode.p2j.persist.RandomAccessQuery.execute(RandomAccessQuery.java:3610)

 at com.goldencode.p2j.persist.RandomAccessQuery.first(RandomAccessQuery.java:1571)

 at com.goldencode.p2j.persist.RandomAccessQuery.first(RandomAccessQuery.java:1456)

This is a case where the table does not exist. The same for the properties. Throw a SQLException in such cases.

#44 - 05/29/2023 09:40 AM - Alexandru Lungu

Created 7062c_h2 and fixed the NPE.

I didn't expect to have a direct-access on a table with invalid name. This is something that should be tracked back to FWD. Do you have some

back-trace on this error? Maybe a weird name used?

Please let me know how fast do you want this integrated.

05/18/2024 23/24

https://proj.goldencode.com/issues/7062#note-27

#45 - 05/29/2023 11:58 AM - Constantin Asofiei

Alexandru Lungu wrote:

Created 7062c_h2 and fixed the NPE.

I didn't expect to have a direct-access on a table with invalid name. This is something that should be tracked back to FWD. Do you have some

back-trace on this error? Maybe a weird name used?

Please let me know how fast do you want this integrated.

What I'm seeing in some customer logs is most likely a side-effect of #7349, where the H2 session gets lost - the point was more to avoid NPEs and

allow SQLException. There is a very small chance that the NPE is the root cause.

#46 - 06/09/2023 03:31 AM - Alexandru Lungu

Merged 7062c_h2 into FWD-H2 trunk as rev. 21.

The fix will be available with the next FWD-H2 upgrade.

Files

direct_access.patch 74.9 KB 02/10/2023 Alexandru Lungu

Powered by TCPDF (www.tcpdf.org)

05/18/2024 24/24

http://www.tcpdf.org

