
Database - Bug #7488

Slow fast-copy with before tables in H2

07/06/2023 06:21 AM - Alexandru Lungu

Status: Test Start date:

Priority: Normal Due date:

Assignee: Radu Apetrii % Done: 100%

Category: Estimated time: 0.00 hour

Target version:

billable: No case_num:

vendor_id: GCD version:

Description

Related issues:

Related to Database - Feature #7404: Trasform replace-mode into append-mode w... Closed

History

#1 - 07/06/2023 06:23 AM - Alexandru Lungu

- Assignee set to Ștefan Roman

- Status changed from New to WIP

This is mostly related to #7404-19. After several optimizations, the most time consuming operations of fast-copy are the ones that use before tables. I

suspect this is because FastCopyHelper.updatePeerRecords is doing a "one-by-one" iteration to update peer-id.

For this task:

Do a test with fast-copy without before tables.

Do a test with fast-copy and before tables.

Compare performance and bottle-necks; confirm FastCopyHelper.updatePeerRecords is dragging back the performance here

Search for an optimization.

#2 - 07/06/2023 08:40 AM - Alexandru Lungu

- Related to Feature #7404: Trasform replace-mode into append-mode when target table is empty added

#3 - 07/18/2023 03:44 AM - Ștefan Roman

After some investigations, FastCopyHelper.updatePeerRecords is not exactly the bottle-neck. When using fast-copy with before tables, most time is

spend in FastCopyHelper.copyMasterTable because it also have to do the mapping. One optimization we can make is set append flag to false if the

destination tables are empty (both master and before) since we don`t need to do the mapping anymore (the signature is checked before doing

fast-copy). I will keep looking for other improvements.

#4 - 07/18/2023 07:23 AM - Alexandru Lungu

Alright; please go ahead with a commit in this sense to 7404a

#5 - 07/18/2023 07:54 AM - Greg Shah

When we copy between any 2 given DMOs, do we save and reuse all the work we do to figure out the "copying plan"?

05/16/2024 1/13

https://proj.goldencode.com/issues/7404#note-19

#6 - 07/18/2023 08:05 AM - Alexandru Lungu

I like the "copying plan" terminology :) This is accurate. We keep a database level mapping on the keys (source to destination) for master table and

eventually before table. The plan follows:

compute the copying plan (pk mapping), unless it can be delayed to a later stage

do the copy for master table (using the pk mapping if exists)

do the copy for normalized extent tables (using the pk mapping or generating one if it was delayed)

do the copying plan (pk mapping) for before tables, unless it can be delayed to a later stage

do the copy for before table (using the pk mapping if exists)

do the copy for normalized extents for before tables (using the pk mapping or generating one if it was delayed)

reset the updatePeerRecords based on the existing pk mapping if any or generate the required pk mappings

other work - for example, if we were asked to retrieve the destination id of a certain source id after the copy process

Note that simple copies don't require any mapping (no normalized extents or before tables). Some of the may require only one mapping (no before

tables). Other may require more work (extents + before).

Certain copy processes are "extra complex" if append is used, as it requires some implicit unique checks (so there is an INSERT INTO [...] SELECT

FROM [...] WHERE [..index is no violated..].

Even more complexity is added by loose-copy as we need to remap the columns from source to destination.

When we copy between any 2 given DMOs, do we save and reuse all the work we do to figure out the "copying plan"?

Now that I have read your comment a second time do you mean if we reuse the copying plan across copy-temp-table statements? So if two tables

are part of a copy process, the same "plan" is reused? Well, this is not a performance concern from my POV; the only consuming tasks here are the

SQL queries, which are prepared and cached anyways. Even updatePeerRecords is just a bunch of update statements. Also, the internal "pk

mapping" we do can't ever be reused.

#7 - 07/18/2023 08:18 AM - Greg Shah

do you mean if we reuse the copying plan across copy-temp-table statements? So if two tables are part of a copy process, the same "plan" is

reused?

Yes, that is exactly what I'm asking.

Well, this is not a performance concern from my POV;

OK, if there is not any appreciable work that can be saved then we don't need to think about caching it.

05/16/2024 2/13

#8 - 07/18/2023 08:45 AM - Greg Shah

Isn't there some string comparison overhead in calculating the field name mappings?

#9 - 07/18/2023 10:17 AM - Alexandru Lungu

Well, there are some bits of code using strings. Even the signature match does some string comparisons. The SQL composition itself may be costly

(as we concatenate all field names), but all parts of any single SQL is done using StringBuilder. I know this also implies some string work, but I am not

sure at what extent is this a problem. We already have #7389 and #7351 which introduced (for example) * wildcard instead of listing all properties.

I agree there is still some work in this direction. I am actively tracking the fast-copy statements from a profiling POC and trying to understand which

optimizations can be done. First phase was to hugely decrease the size of the statements. I guess the second phase is optimizing this string work as

you said.

#10 - 07/21/2023 08:58 AM - Ștefan Roman

I added this first change. I tested with a small test and a client app and it works fine. Committed on 7404a, revision 14652.

#11 - 07/25/2023 04:15 AM - Alexandru Lungu

Review of 7404a, revision 14652.

The lines you changed now exceed 110 characters. Consider extracting the last parameter into noMapping.

I am redoing my tests from #7404-19 - lets see if there are changes.

#12 - 07/25/2023 06:37 AM - Alexandru Lungu

Simple

copy

Append Loose-c

opy

Extents Before Time Count Avg Master

Copy

Extent

Copy

Before

Copy

Before

Extent

Copy

Before

Update

Peer

Other

7404a / rev. 14651

No No No No No 13ms 152 0.08 13.60m

s / 0.08

- - - - 0.17ms

/ 0.001

Yes No No No No 39ms 461 0.08 38.78m

s / 0.08

- - - - 0.72ms

/ 0.001

Yes Yes No No No 2.6ms 24 0.10 02.66m

s / 0.10

- - - - 0.02ms

/ 0.000

No Yes Yes No No 0.8ms 6 0.16 00.85m

s / 0.14

- - - - 0.01ms

/ 0.001

No Yes Yes No Yes 36.4ms 74 0.49 09.27m

s / 0.12

- 6.51ms

/ 0.08

- 16.53m

s / 0.22

4.27ms

/ 0.057

Yes Yes No Yes Yes 0.9ms 2 0.45 00.16m

s / 0.08

00.28m

s / 0.14

0.20ms

/ 0.10

0.15ms

/ 0.06

00.07m

s / 0.03

0.11ms

/ 0.055

No Yes Yes Yes Yes 22.3ms 21 1.06 04.41m

s / 0.21

05.24m

s / 0.12

4.44ms

/ 0.24

2.68ms

/ 0.12

03.61m

s / 0.17

1.98ms

/ 0.094

The changes optimize the append cases quite well.

Master Copy times are now lower on average, because there were many append over empty tables, so this could be optimized (delay easier PK

mapping)

Extent Copy (for master and before) is a bit slower as the PK mapping is delayed until this point now.

Before Copy is way more efficient. This is because it doesn't do any eager PK mapping if there are no append and the delayed PK mapping is

faster.

Update Peer is just a bit slower as most delayed PK mappings should be built here.

The total time now for all copy operations is ~115ms, while before we faced ~146.3ms. There is no obvious slow-down here - all operations complete

in <0.25ms.

For the more complex operations, I guess we can even batch the SQL we are using, right? However, I don't think there is much benefit considering

that the underlying database is in-memory.

05/16/2024 3/13

https://proj.goldencode.com/issues/7389
https://proj.goldencode.com/issues/7351
https://proj.goldencode.com/issues/7404#note-19

I will check next #7488-7: are there any copy operations that repeat (have the same source-destination pair)?

Also, I think the following is a typo in FastCopyHelper.executeCopy:

 dstBuf.invalidateFFCache(0);

 if (srcB4Buf != null)

 {

 srcB4Buf.invalidateFFCache(0);

 }

I guess srcB4Buf should be replaced with dstB4Buf.

#13 - 07/25/2023 06:43 AM - Alexandru Lungu

- % Done changed from 0 to 50

Last minute notice: updatePeerRecords doesn't use prepared statements, but generates plain SQL statements. Stefan, please refactor the code

there so prepared statements are used for _PEER_ROWID updates.

#14 - 07/26/2023 05:21 AM - Alexandru Lungu

Alexandru Lungu wrote:

I will check next #7488-7: are there any copy operations that repeat (have the same source-destination pair)?

Also, I think the following is a typo in FastCopyHelper.executeCopy:

[...]

I guess srcB4Buf should be replaced with dstB4Buf.

Nevermind; this can be removed entirely. We already invalidate the ffcache once we exit the FastCopyHelper.executeCopy in TemporaryBuffer.

#15 - 07/26/2023 07:53 AM - Alexandru Lungu

Committed 7404a/rev. 14653. This resets the loose-copy flag if the loose property matching is the same as the same as the simple-copy one (all

properties are included in the same order). This way, I got slightly faster table copies due to the use of the * wild-mark, both in source and destination.

Stefan, please update your 7404a.

I have only 9 copy operations in my POC that aren't covered by fast-copy. There take 3.1ms in total, so we can skip the effort of getting more SQL in

fast-copy mode.

05/16/2024 4/13

https://proj.goldencode.com/issues/7488#note-7
https://proj.goldencode.com/issues/7488#note-7

I've done some investigation and there seems to be many copy operations that are repeated, so we can re-use the previously computed "bundle of

SQLs" to do the copy. However, most of the repeating operations were trivial anyway - the most consuming ones are between static tables and

dynamic tables - and these don't quite repeat.

#16 - 07/26/2023 08:10 AM - Greg Shah

the most consuming ones are between static tables and dynamic tables - and these don't quite repeat.

It is a common pattern the in 4GL to do something like this:

create a new dynamic TT LIKE a static non-temp database table

copy records from the database table into the new temp-table

process the temp-table

generate output from the tt or copy the tt data back to the database table

Perhaps they don't repeat because each time through a new dynamic tt is created (but it is really the same table every time).

#17 - 07/26/2023 09:11 AM - Ștefan Roman

I fixed the line longer than 110 characters and removed the invalidation block. I changed updatePeerRecords so now it is using

Persistence.executeSQLBatch with PreparedStatement.

Committed on 7404a, revision 14654.

#18 - 07/27/2023 09:03 AM - Alexandru Lungu

Greg Shah wrote:

Perhaps they don't repeat because each time through a new dynamic tt is created (but it is really the same table every time).

This is right. Thus, the SQLs can't be cached / prepared and resued mostly because the dynamic tables will have different names (dtt1, dtt2, etc.).

However, most of the SQLs match (as the fields as named with field1, field2, etc.). Basically, only the table name mismatches, making the statements

not preparable / cachable.

I am still looking forward to cache such statements even for the simple static-to-static cases.

#19 - 07/27/2023 09:16 AM - Greg Shah

05/16/2024 5/13

Do we really need the table names to be different at the database level? Why not reuse the same table and DMOs? It is not like the tables can be

referenced by name in the source code. It seems like the temp-table names don't matter.

#20 - 08/03/2023 03:26 AM - Alexandru Lungu

- Assignee changed from Ștefan Roman to Radu Apetrii

Radu, there is some work in #7404 regarding the moving of most of the copy-temp-table operations to fast-copy using heuristics (e.g. copy in

REPLACE mode with empty destination is equivalent to APPEND mode, which is faster). We reached >90% of the operations to be "fast" on a

customer POC. This is good, but it seems that our current fast-copy is in fact slower for some cases (see #7488-12). We need a refactoring of

FastCopyHelper!

To start with, we need FastCopyHelper to be a cachable object based on the source and destination DMO + before source and destination DMO +

copy mode bitmask (NORMAL, APPEND, REPLACE, LOOSE-MODE). This will need some refactoring, of course. The final goal is to reuse

FastCopyHelper with all of its underlying SQL. Basically, we need to build a "copy bundle" that is an SQL batch which after execution will do the table

copy. Right now, all SQL are generated all over again for each copy. Try to find the best solution without altering the current behavior. Please use

7404a for development, as it already has the latest improvements there.

Important!: some of the optimizations are contextual (depending if the target is empty or not). Therefore, inside FastCopyHelper, there are changes

in the copy mode (e.g. if the target is empty, don't do APPEND, but simple copy). Such mode changes should be tackled in

TemporaryBuffer.copyAllRows, so that we pick up the right FastCopyHelper in the end, without implicit mode changes. Otherwise, we might cache the

wrong SQL just because we had a context - no, we should cache FastCopyHelper not dependent upon any context (e.g. if the target is empty or not).

Please mark this as one of your top priorities.

#21 - 08/17/2023 06:26 AM - Radu Apetrii

I've done some refactoring to FastCopyHelper:

Added a cache that stores the instances of FastCopyHelper based on a FastCopyKey.

A FastCopyKey is generated with the help of the class from source buffer, destination buffer, source before buffer, destination before buffer and

an integer denoting a bitmask for the copy mode (APPEND, REPLACE, etc.).

Added FastCopyBuilder which allows the creation of a FastCopyHelper.

Rewrote the static methods so that they are no longer static (apart from the ones that use the cache).

In TemporaryBuffer, instead of having multiple method calls to FastCopyHelper, the process has been refactored so that there is one call (via

FastCopyHelper.tryExecuteCopy).

The commit is on 7404a, rev. 14655.

After some performance testing, an improvement is definitely visible. However, I believe there is still room for improvement.

Here are some results (note that a positive value means improvement):

Table

size/populat

e

Test-loose

improvement

Test-index

improvement

Test-fields

improvement

Test-extent

improvement

small/small 11.34% 5.49% 11.34% 6.35%

small/mediu

m

2.67% 2.16% 3.21% 0.09%

small/large 1.77% not tested 3.11% not tested

medium/sma

ll

5.93% 0.62% 1.36% 7.79%

medium/med

ium

1.89% 2.28% 0.66% 1.05%

large/small 6.57% 3.51% 2.35% 3.39%

05/16/2024 6/13

https://proj.goldencode.com/issues/7404
https://proj.goldencode.com/issues/7488#note-12

#22 - 08/17/2023 11:15 AM - Alexandru Lungu

Review of 7404a

This is a good start, but it is still far from ideal at this point. Radu, please consider doing more radical changes to get this state-of-the-art.

destRecId = new rowid(); destRecId.assign(copyResult); doesn't have sense. destRecId comes as a parameter, so reassigning here won't help!

It is caller's responsibility to pass down a non-null destRecId if srcRecId is set. You can pass down null, but in this case just skip the assignment.

Also, I don't think dstQueried is required here. Finally, move srcRecId next to destRecId parameter.

I think you can create a FastCopyKey based on a FastCopyBuilder directly (I mean using a constructor with a single parameter, a

FastCopyBuilder).

fastCopyCache shouldn't be a HashMap because it can leak. There is not a finite number of DMO through-out the execution (as there are

dynamically generated DMOs). Transform it into a LRUCache. Please look into Danut changes on CacheManager.createMapCache. Set the size

on 256.

dstIsTableEmpty, srcB4IsTableEmpty and dstB4IsTableEmpty don't look right. When you initialize the fast-copy, these will be set according to

the current state of the application. As these are not part of the cache key, you may end up hitting the cache with non-empty tables, but with

these flags set on true. This might cause regressions. All flags from the FastCopyHelper should be conceptually immutable. This is the case

for most of them (srcMeta, srcDmoInterface, srcDialect, srcTableName, etc.). A trivial solution is to include the "empty" flags into the cache keys.

Please double check Persistence and if it can be cached inside FastCopyHelper and reused. Hopefully it won't be subject to any mutability.

There might be some concurrency issues with fastCopyCache. I think this should have synchronized access. AFAIK, LRUCache is not

synchronized:

Note that TemporaryBuffer.Context is a class which is per-session, so you can move the cache there (recommended)

Create a ContextLocal instance in FastCopyHelper.

Do explicit synchronization of the cache - this means that the cache is shared. This might be quite tragic as long as you need to store

Persistence inside (or other per-session resources).

The overhead of storing each SQL in separate variables is huge. I mean, it is functional, but far from maintainable. The issue here is that you

keep 13 string members, but only some of them may be non-null. I would suggest for a start to:

Consider splitting the code for master from the one for before. Basically, imagine that there are two independent copy operations. The only

point where they converge is updatePeerRecords. You can generate one FastCopyHelper for master and one for before. After you execute

both, just call updatePeerRecords as a static method, passing down the FastCopyHelper / FastCopyContext instances and "pick up"

whatever you need from there. Having everything duplicated (for master and before) is something I want to get rid of asap. This way you

can make light-weight cache keys, less properties, etc.

All methods that execute SQL (e.g. safeTableCopyNoMapping) can be refactored to only append the SQL into a "bundle" (ArrayList with

pairs of query string and Object[] args). Note that args should be dynamically computed and not stored! That is, instead of Object[] args,

you will need Function<FastCopyContext, Object[]> that will use the fast-copy helper/context to detect the proper arguments at the right

time.

In the end, each FastCopyHelper will basically compute a FastCopyBundle. So, if the bundle is not computed, compute it. If it is computed,

run it using the FastCopyContext.

This is something I wanted to add a very time ago, but didn't had a clean code to do it right. Please set a save-point before attempting to run the

bundle. In case anything occurs, consider reverting the whole bundle. This avoids partial fast-copy attempts.

This is a long note. Please feel free to discuss further anything from above.

The goal here is:

For one copy attempt (master or before)

Extract an existing FastCopyHelper from the cache if exists or create a new one.

Compute the FastCopyBundle if exists or use it directly.

Combine the FastCopyBundle and FastCopyContext to do the execution. Basically, iterate one-by one: the SQL query, compute the

arguments and run.

If we had both master and before, call updatePeerRecords.

Minor:

srcBuf.getDmoInfo() is called several times, even if there is already a srcMeta. This also applies for dest and before.

I think you better rename FastCopyBuilder into FastCopyContext. This basically means the run-time context in which you use the

FastCopyHelper. I want to stress out the importance of splitting the immutable data from the mutable data. Keep immutable in

FastCopyHelper, move mutable in FastCopyContext. Use the FastCopyHelper with the right context at the right time

For now, you can omit destRecId as it can be easy to handle at the very end.

05/16/2024 7/13

#23 - 08/23/2023 06:50 AM - Radu Apetrii

I added some more changes to FastCopyHelper on 7404a, rev. 14656:

Merged the master/before methods, meaning that instead of having, for example, a getMasterMapping and a getBeforeMapping, there is now

only one method, getMapping.

Moved the fastCopyCache to TemporaryBuffer.Context. This implies that this cache is now per-session instead of being static.

Created a FastCopyBundle insinde FastCopyHelper which does the following:

It stores the SQLs that should be executed instead of having them executed on the spot.

It executes the SQLs that have been stored at the end of the copying process.

In case the fastCopyCache is hit, then the bundle is ready to go and be executed instead of having to wait for the SQLs to be computed.

Added a savepoint in case the execution of the SQLs fail and a rollback is necessary.

Other not-so-major changes (suggested in #7488-22), such as changed the fastCopyCache from a HashMap to a LRUCache, changed the

name of FastCopyBuilder to FastCopyContext, etc.

I ran several tests and got no error. Performance wise, I still get a decent improvement, but I am yet to test with a large customer application.

#24 - 08/25/2023 03:57 AM - Alexandru Lungu

- % Done changed from 50 to 70

Review of 7404a, rev. 14656

The changes are quite good now and look pretty stable. However, there are still some improvements that can be made, especially on the

performance side. Radu, prepare this branch for a final review / testing / profiling. Thus, do a double/triple check and testing. Consider debugging into

the solution to ensure it does the right job.

Please dig in a bit into the append / replace / loose-copy cases. If you have append |-> true replace |-> true, but the destination is empty, this will

cause append |-> true replace |-> false. However, this check is done in tryExecuteCopy, which is quite late. This means the cache will have both

append |-> true replace |-> true and append |-> true replace |-> false with the same underlying bundle. You shall do the isTableDefinitelyEmpty

check in TemporaryBuffer and alter the append / replace flags before doing the actual cache look-up. In essence, tryExecuteCopy looks like an

overhead here.

The append flag is propagated through almost all methods - is this still required? Can't we use the class-level append?

You can eliminate the *Sql class members, as the SQLs are stored in the bundle anyway. No need for a two-level caching here.

for (int i = 1; i < argSize; i++) arguments[i] = args.get(i); is this safe? It works as it start from 1, so it avoids context related arguments. However, it

looks quite easy to break. Consider leaving args only for non-contextual arguments and append contextual arguments (like

fastCopyContext.dstBuf.getMultiplexID()) separately (outside args).

Minor:

Replace Context ctx = context.get(); with Context ctx = local;, or use local directly. Once you are in a temporary buffer (non-static method), you

have the context already resolved inside local. Using get will do some thread-local type of work to identify the current context; this is not required.

Add javadoc to Context.getFastCopyHelper.

FastCopyHelper.finishCopy can now return destRecId, instead of assigning it.

Please attempt before copy only if before exists. Therefore, avoid the whole cache look-up and copy attempt if before are not enabled.

In FastCopyHelper.updatePeerRecords, you should use beforeCopyHelper.srcPersistence.executeSQLBatch(sql, supp), instead of the first

masterCopyHelper.srcPersistence.executeSQLBatch(sql, supp).

In executeSqls, you can rethrow the same exception.

FastCopyContext.pk is quite confusing. Is this the first pk used for the destination table?

You can inline addBundleElement with new FastCopyBundleElement, or even do a sugar-method addBundleElement(String sql,

Function<FastCopyContext, Object[]> args)

For lambda function, you need to have the open brace ({) on a separate line.

generateArgs in copyExtentFields can simply return args. I don't think a copy of the Object array is actually required here.

You can make FastCopyKey of type byte. It suits better the bit masks with a low number of bits.

FastCopyBundle can be a static class (?)

if (element instanceof FastCopyBundlePKElement) is not required, just call execute. The overriding will do its job - as long as you make execute

non-private.

extends clause should be on a separate line.

05/16/2024 8/13

https://proj.goldencode.com/issues/7488#note-22

#25 - 08/28/2023 06:03 AM - Radu Apetrii

I've applied the suggestions from the last post (except one) and committed to 7404a, rev. 14658.

Alexandru Lungu wrote:

Replace Context ctx = context.get(); with Context ctx = local;, or use local directly. Once you are in a temporary buffer (non-static method),

you have the context already resolved inside local. Using get will do some thread-local type of work to identify the current context; this is not

required.

The problem with this is that TemporaryBuffer.copyAllRows is a static method, so I don't have access to local, which is non-static. I tried some

workarounds too see if I could gain access to it, but I couldn't get rid of Context ctx = context.get();.

#26 - 08/28/2023 08:07 AM - Alexandru Lungu

Radu Apetrii wrote:

The problem with this is that TemporaryBuffer.copyAllRows is a static method, so I don't have access to local, which is non-static. I tried some

workarounds too see if I could gain access to it, but I couldn't get rid of Context ctx = context.get();.

You can still extract the context from one of the buffers (srcBuf.local). In theory, all 4 buffers (source/destination, master/before) should have the

same local context.

#27 - 08/28/2023 08:17 AM - Radu Apetrii

Alexandru Lungu wrote:

Radu Apetrii wrote:

The problem with this is that TemporaryBuffer.copyAllRows is a static method, so I don't have access to local, which is non-static. I tried

some workarounds too see if I could gain access to it, but I couldn't get rid of Context ctx = context.get();.

You can still extract the context from one of the buffers (srcBuf.local). In theory, all 4 buffers (source/destination, master/before) should have the

same local context.

Right, I didn't think of that, thank you. I swapped context.get() with srcBuf.local and committed to 7044a, rev. 14659. I did not encounter issues when

testing.

05/16/2024 9/13

#28 - 08/29/2023 10:45 AM - Alexandru Lungu

- % Done changed from 70 to 90

Review of 7404a

You don't actually need FastCopyContext.newInstance - you can call the constructor directly.

You can cache canFastCopy result. If you ever attempt to do a copy that you know it can't be done fast, then you can simply short-circuit

canFastCopy. Also, if you know once that the copy can be done, no need to double check the signatures. Note the javadoc is not right for return

- it shouldn't mention the return type

There is quite some logic around isBefore inside executeCopy. Can you summarize it here - precisely why is it needed? What are the differences

between master and before copies?

I am worried that if (fastCopyBundle.isBundleComputed()), this returns true only for before tables, otherwise it returns false.

Also, copyExtent is true only for master copies. Note that before tables can have extents too that need to be copied!

The hasBeforeRecords && fastCopyBundle.isBundleComputed() conditional is checked twice. The second occurrence can be removed.

I don't see the point of tryExecuteCopy anymore. You shall replace success with canFastCopy and call executeCopy for master directly in

TemporaryBuffer.

do a double-check for the javadoc. There is a lot of code changed here, so we need to make sure the javadoc is not referring to the old

(un-cached) approach.

#29 - 08/30/2023 04:06 AM - Radu Apetrii

Alexandru Lungu wrote:

There is quite some logic around isBefore inside executeCopy. Can you summarize it here - precisely why is it needed? What are the

differences between master and before copies?

isBefore was introduced to serve three purposes:

When assembleUidMapping is called, the program isn't aware if the copy process is happening for master of before, thus, it has no idea if the

parameter for the function is supposed to be BEFORE__PK__MAPPING or MASTER__PK__MAPPING. I guess this can be refactored so

that there is only one mapping stored which is determined in the initialize method.

In copyTable, a master copy can be executed through either safeTableCopyNoMapping, safeTableCopy, or copyTable. For a before copy,

though, there are only two methods available: safeTableCopy and copyTable. The role of isBefore was to eliminate the possibility of a

before copy to execute safeTableCopyNoMapping taking into account the fact that the parameters for copyTable could have the same values

for both master and before.

As of 7404a, rev. 14658-14659, this reason kinda lost its point, because finishCopy got separated from clear. Before those changes, finishCopy

was handling both the execution of SQLs for the master copy and the clear part (with drop table ...). Since I didn't have access to the before copy

when I was in masterCopyHelper.finishCopy in order to execute the before SQLs between the master SQLs and the clear part, I reorganized the

code a bit:

For the master copy:

Enter executeCopy.

If the bundle is already computed, then quickly exit, because the SQLs are already generated and will be executed in finishCopy.

If the bundle is not computed, then execute copyTable and generate the SQLs which will be executed later.

For the before copy:

Enter executeCopy.

If the bundle is already computed, then execute the SQLs right away because it won't have a chance later to do that.

If the bundle is not computed, execute copyTable to generate the SQLs and then execute the SQLs.

Because finishCopy got separated from clear, I think I can mimic the behavior of the master copy for the before process, meaning that executeCopy

won't behave differently depending on the type of copy. This seems more logical and less complicated.

The only relevant purpose at the moment for isBefore would be bullet 2 from the list above. If you wish, I can try to get rid of it for good. Also, I will

address the other points from the #7488-28 and I will keep you up to date.

Note: In copyTable I will have to double-check the conditions because it seems that before copy doesn't have access to safeTableCopy at the

moment.

05/16/2024 10/13

https://proj.goldencode.com/issues/7488#note-28

#30 - 08/30/2023 04:19 AM - Alexandru Lungu

Radu Apetrii wrote:

The only relevant purpose at the moment for isBefore would be bullet 2 from the list above. If you wish, I can try to get rid of it for good. Also, I

will address the other points from the #7488-28 and I will keep you up to date.

That will be great. The only thing to avoid for before is to do safeTableCopyNoMapping, because mappings are always needed when you do before

copies. You can keep isBefore in the cache key and fast-copy helper to help you out with this. But make sure the use of this flag is limited only to this

scenario.

#31 - 08/30/2023 08:09 AM - Radu Apetrii

I applied the bullets from #7488-28 and committed to 7404a, rev. 14660. In addition to that, I also merged the two processProperties functions since

one of them was just calling the other one without any consequences.

There were no issues found while testing, but I'm still waiting for the database import to finish in order to test with a large customer application.

#32 - 08/31/2023 09:58 AM - Alexandru Lungu

The changes are very close to state-of-the-art in 7404a. Very good job, Radu!

Please rename PK__MAPPING into pkMappingName. This is not static anymore, so it is not a constant per-se.

Is there any reason why canFastCopy should be cached when validTempTableBulkCopy returns false?

I would expect that executeCopy would actually execute the copy. In your case, the finishCopy actually executed. Can we make executeCopy

execute the bundle if computed and eventually return the dstRecId? Is the separation between executeCopy and finishCopy needed?

We can avoid isPKComputed by considering dstPK as null when not computed.

Danut, did you had some correctness tests with fast-copy at some point? Can you share them here?

#33 - 09/01/2023 02:10 AM - Dănuț Filimon

- File ctt-tests.zip added

Alexandru Lungu wrote:

Danut, did you had some correctness tests with fast-copy at some point? Can you share them here?

I attached my tests that I used in #7389. Note that I already shared this test suite with Radu at his request, so I don't know if it's going to help.

05/16/2024 11/13

https://proj.goldencode.com/issues/7488#note-28
https://proj.goldencode.com/issues/7488#note-28
https://proj.goldencode.com/issues/7389

#34 - 09/04/2023 04:00 AM - Radu Apetrii

Dănuț Filimon wrote:

Alexandru Lungu wrote:

Danut, did you had some correctness tests with fast-copy at some point? Can you share them here?

I attached my tests that I used in #7389. Note that I already shared this test suite with Radu at his request, so I don't know if it's going to help.

At the time of posting the solution (#7488-31), the program was already tested with Danut's examples, and there were no issues. But thank you for

the intervention.

I committed to 7404a, rev.14661 the changes suggested in #7488-32. I did not encounter problems when applying them.

#35 - 09/05/2023 05:19 AM - Alexandru Lungu

Radu, in 7404a, the immutable and mutable data still not independent from each other:

In FastCopyHelper.executeCopy, noMapping depends on the context (as it depends both on hasBeforeRecords and hasSourceId which is

contextual). Note that hasBeforeRecords depends on isTableDefinitelyEmpty. Therefore, you can compute different kind of bundles depending

on the state.

noMapping should be included into the key, to distinguish between copies requiring mapping and the ones that don't.

I made this change in 7404a/rev. 14662. Radu, please review.

#36 - 09/05/2023 05:41 AM - Radu Apetrii

Alexandru Lungu wrote:

I made this change in 7404a/rev. 14662. Radu, please review.

The changes make sense, it was important to fully separate the contextual variables from the non-contextual.

However, while scrolling through the class, I accidentally found a line that has over 110 characters: in FastCopyHelper.clear, where you added if

exists to the SQL. Apart from that, it looks great. I'm looking forward to the profiling results.

05/16/2024 12/13

https://proj.goldencode.com/issues/7389
https://proj.goldencode.com/issues/7488#note-31
https://proj.goldencode.com/issues/7488#note-32

#37 - 09/05/2023 10:51 AM - Alexandru Lungu

- % Done changed from 90 to 100

- Status changed from WIP to Review

I've done a second commit on 7404a removing more mutable data and making the solution more stable (rev. 14663). Now I am not facing regressions

anymore:

clear is dependent upon context (if it created a mapping or not on its way)

remove append if possible in TemporaryBuffer, not in FastCopyHelper

removed srcToDstPks which was context dependent.

removed copyMeta as it was redundant

removed some SQL query caches as they were redundant.

removed replace mode from the fast-copy key as fast-copy doesn't support replace mode. It is resolved before the fast-copy is actually used.

I will start running my regression tests as they are stable enough now.

However, while scrolling through the class, I accidentally found a line that has over 110 characters: in FastCopyHelper.clear, where you added if

exists to the SQL. Apart from that, it looks great. I'm looking forward to the profiling results.

I removed the if exists and kept the server-side state in generatesPkMapping. This is no longer a problem.

#38 - 09/11/2023 05:55 AM - Alexandru Lungu

- Status changed from Review to Test

Committed 7404a to trunk as rev. 14730.

Files

ctt-tests.zip 7.86 KB 09/01/2023 Dănuț Filimon

Powered by TCPDF (www.tcpdf.org)

05/16/2024 13/13

http://www.tcpdf.org

