
Base Language - Bug #7722

improve performance of equals/not equals when used with character/longchar

08/21/2023 06:14 AM - Constantin Asofiei

Status: WIP Start date:

Priority: Normal Due date:

Assignee: Dănuț Filimon % Done: 80%

Category: Estimated time: 0.00 hour

Target version:

billable: No case_num:

vendor_id: GCD

Description

History

#1 - 08/21/2023 06:20 AM - Constantin Asofiei

In a large app, there are ~350k calls of Text.compareTo which originate from equals/not-equals operators (via CompareOps). In these cases, we

should use the uppercase compare only if their lengths are equal. For different lengths, there is no way for this equals/not-equals operators to return

true.

Also, keep in mind that the lengths need to be compared using the StringHelper.safeTrimTrailingSpaces result.

CompareOps.equals is also called from BaseDataType.equals.

#2 - 08/21/2023 07:10 AM - Alexandru Lungu

- Assignee set to Dănuț Filimon

#3 - 08/21/2023 08:46 AM - Alexandru Lungu

This makes sense. We have some recent implementation in FWD-H2 that was targeting this exact issue. We can even compare strings by reference

s1 == s2 to short-circuit this. Also, we can use regionMatches instead of 2 toUpperCase and 1 equals.

Danut, please mind that this is not about how Text.compareTo is implemented, but the fact that a Text.equals should have been used instead.

#4 - 08/21/2023 11:10 AM - Constantin Asofiei

Alexandru Lungu wrote:

This makes sense. We have some recent implementation in FWD-H2 that was targeting this exact issue. We can even compare strings by

reference s1 == s2 to short-circuit this.

This only works with intern'ed strings, right?

Also, we can use regionMatches instead of 2 toUpperCase and 1 equals.

There is this comment in Text.compareTo:

05/05/2024 1/4

 // DO NOT use String.compareToIgnoreCase() since this lowercases and yields different

 // results for >, <, >= and <= forms when [\ ^ _ ' characters are included in the operands

 return s1.toUpperCase().compareTo(s2.toUpperCase());

I don't think regionMatches can be used.

Danut, please mind that this is not about how Text.compareTo is implemented, but the fact that a Text.equals should have been used instead.

I think we need overloads as CompareOps.equals(Text, Text), to use Text.equals.

#5 - 08/22/2023 03:27 AM - Alexandru Lungu

Constantin Asofiei wrote:

This only works with intern'ed strings, right?

Right. In FWD-H2 this short-circuit had a ~2% hit rate if I remember correctly. This was due to the fact that FWD-H2 uses a light-weight simulated

string pool (mostly like an array cache with hash index), which allows the reuse of the same string instances where possible. In FWD however, I

expect to see some strings that are interned at start-up, so this short-circuit may have a nice hit rate. This needs to be tracked.

We can leave this at the very end of the implementation.

Also, we can use regionMatches instead of 2 toUpperCase and 1 equals.

There is this comment in Text.compareTo:

[...]

I don't think regionMatches can be used.

I am aware of this comment. We need to investigate this further. Our text comparison methods are not uniform across the application. In FWD-H2 we

have collation sensitive comparisons (generating and caching collation keys). I expect that the note you mention is in fact a collation problem in FWD,

rather than a Java problem. Unfortunately, including collation aware comparisons may actually affect performance, but guarantee that we have a

sound and complete solution.

But, this issue is only for comparisons, not equal checks. Therefore, most probably we can use regionMatches for equality and keep compareTo for

comparisons.

My conclusion for regionMatches: we need to track down the issue that caused the mentioned note. If it proves to be a collation issue, we can open a

separate task for further investigation.

05/05/2024 2/4

#6 - 08/22/2023 05:22 AM - Alexandru Lungu

Created 7722a.

#7 - 08/22/2023 06:58 AM - Dănuț Filimon

Committed 7722a/rev.14704. Added Text.equals() method which uses regionMatches. The method is called in CompareOps.equals when both

instances are Text.

#8 - 08/22/2023 08:27 AM - Alexandru Lungu

Review of 7722a/rev.14704

Use Override annotation for equals in Text. Make it return false if the parameter is not a Text. This will make the casting safe

Use a single return with regionMatches. The first parameter can be directly caseSens || o.caseSens instead of the if conditional.

I think Text.value and Text.unknown can be set in the same time (?). In this case, the code fails for op1 |-> {value: "a" unknown: true} and op2 |->

{value: "a" unknown: false}. In this case, even if they have the same value, one is known and the other is unknown. Please add the value

o.value short-circuit after you do the (unknown | null)-check.

unknown || o.unknown is more concise than value null || o.value == null.

#9 - 08/24/2023 03:46 AM - Alexandru Lungu

Danut, please get this done asap. I am planning to do a set of regression tests + profiling. I am keen on getting this merged today.

#10 - 08/24/2023 03:46 AM - Alexandru Lungu

- Status changed from New to WIP

- % Done changed from 0 to 80

#11 - 08/24/2023 05:10 AM - Dănuț Filimon

Alexandru Lungu wrote:

Danut, please get this done asap. I am planning to do a set of regression tests + profiling. I am keen on getting this merged today.

Committed 7722a/rev.14705. Made changes based on the #7722-8 review.

#12 - 08/24/2023 06:00 AM - Constantin Asofiei

Alexandru, there is a concern; if we compare case-insensitive, there is no guarantee that a lowercase and an uppercase letter is always of the same

length. See this for a starting point: https://stackoverflow.com/questions/2357315/does-javas-tolowercase-preserve-original-string-length, especially

the STRASSE vs straße case.

#13 - 08/24/2023 07:45 AM - Alexandru Lungu

Constantin Asofiei wrote:

Alexandru, there is a concern; if we compare case-insensitive, there is no guarantee that a lowercase and an uppercase letter is always of the

same length. See this for a starting point: https://stackoverflow.com/questions/2357315/does-javas-tolowercase-preserve-original-string-length,

especially the STRASSE vs straße case.

05/05/2024 3/4

https://proj.goldencode.com/issues/7722#note-8
https://stackoverflow.com/questions/2357315/does-javas-tolowercase-preserve-original-string-length
https://stackoverflow.com/questions/2357315/does-javas-tolowercase-preserve-original-string-length

This is part of my recent observation regarding the collation specific comparisons. They are done in FWD-H2, but not in FWD (note my #7722-5,

second part). Take the following example:

 Collator coll = Collator.getInstance(new Locale("tr"));

 coll.setStrength(Collator.PRIMARY);

 System.out.println(coll.compare("straße", "STRASSE")); // 1

 coll.setStrength(Collator.SECONDARY);

 System.out.println(coll.compare("straße", "STRASSE")); // 1

 coll.setStrength(Collator.TERTIARY);

 System.out.println(coll.compare("straße", "STRASSE")); // 1

 coll.setStrength(Collator.IDENTICAL);

 System.out.println(coll.compare("straße", "STRASSE")); // 1

 coll = Collator.getInstance(new Locale("fr"));

 coll.setStrength(Collator.PRIMARY);

 System.out.println(coll.compare("straße", "STRASSE")); // 0

 coll.setStrength(Collator.SECONDARY);

 System.out.println(coll.compare("straße", "STRASSE")); // 0

 coll.setStrength(Collator.TERTIARY);

 System.out.println(coll.compare("straße", "STRASSE")); // -1

 coll.setStrength(Collator.IDENTICAL);

 System.out.println(coll.compare("straße", "STRASSE")); // -1

The point here is that the comparison is highly dependent upon the used locale / collator. When it comes down to equality, the collator simply uses

compare(source, target) == Collator.EQUAL. Therefore, there is no "faster" way of doing equals instead of compareTo.

I guess we can disregard the length comparison out of obvious reasons (for case-insensitive). In FWD-H2, we generate collation keys that we cache

to do the proper comparison. In fact, we generate a collation key for case-sensitive and one for ignore-case (that is the upper-case). We don't use

TERTIARY comparison, but we just compare the upper-case versions - I guess this can be improved.

For the moment, we either:

keep the toUpperCase solution and short-circuit the comparison if the upper-case versions have a different number of characters. This won't

avoid the upper-case, but will short-circuit the compareTo.

move to the collation approach with SECONDARY level for case-insensitive and IDENTICAL for case-sensitive.

In 4GL, message "straße" = "STRASSE". prints yes.

Powered by TCPDF (www.tcpdf.org)

05/05/2024 4/4

https://proj.goldencode.com/issues/7722#note-5
http://www.tcpdf.org

