
Database - Bug #7991

use ScrollingResults instead of ProgressiveResults when FORWARD-ONLY mode and database

cursors are available.

11/01/2023 04:24 AM - Alexandru Lungu

Status: WIP Start date:  

Priority: High Due date:  

Assignee: Dănuț Filimon % Done: 30%

Category:  Estimated time: 0.00 hour

Target version:    

billable: No case_num:  

vendor_id: GCD   

Description

Related issues:

Related to Database - Bug #7496: finish support for query:forward-only attribute WIP

History

#1 - 11/01/2023 04:58 AM - Alexandru Lungu

- Subject changed from Presort Query generates a projection FQL to PresortQuery.next improvements

I've seen PreselectQuery.next a lot of times popping as no. 1 candidate in profiling tests (on several customer applications). For one of them, I've

noticed that it is usually a PresortQuery. After some slim investigation, it looks like PresortQuery is always extracting "full-records" from the database

so it can sort and break them properly. However, the final results stores only their ids (as a projection query does).

This is accurate as it forces the next to load records back from the database to honor cases where the DMO changes in the mean-time or is deleted

(so it doesn't use stale data). This exact issue is already a problem in the PreselectQuery that doesn't load records back from the database. This

issue is attempted to be solved #5768 (5768a). Anyway, for PresortQuery, as all records are hydrated in the mean-time, they will be found in the

session cache, so there won't be a second database round-trip.

I don't have an exact idea how to improve the process here. It is important to notice that there are tons of queries which instead of FOR EACH tt, use

FOR EACH tt BREAK BY f1, but don't use the break groups / accumulation. I suspect this kind of code was an "optimization" in the legacy code

to force iterating non-scrolling, type-forward-only queries with a simple FOR EACH block.

Maybe we can store the whole DMO in the PresortQuery results to avoid doing a second cache look-up (?).

#2 - 12/06/2023 09:11 AM - Dănuț Filimon

While looking into improving the FQL building, I stumbled upon a similar code to the one from FQLPreprocessor.parse() in FQLPreprocessor(). The

parse method makes use of a cache added in #7731 and this constructor can also benefit from it.

#3 - 12/11/2023 04:30 AM - Dănuț Filimon

After investigating #7991 for any other possible improvements, I found the following:

PreselectQuery.execute should check for the results and components first instead of the sort, this allows a quick exit - LOW.

TemplateResults is a nested class in PreselectQuery, but it is used by other queries with no direct access to it meaning that it has to be done via

05/02/2024 1/15

https://proj.goldencode.com/issues/7731
https://proj.goldencode.com/issues/7991


the PreselectQuery.execute method. After running a POC test, i noticed that this method is not generating a time worth optimizing, but the fact

that the getTemplateRowId mostly returns null and TemplateResults are not used is concerning. - VERY LOW.

Using JMX counters I noticed a large number of OffEndExceptions being thrown when a PresortQuery calls next, around 1/6 ended up throwing

it. This is already being worked on in #7045 - HIGH.

During POC tests I noticed PreselectQuery.next() call AdaptiveQuery.next(LockType) for 72% of the time, the 28% is calling

PreselectQuery.next(LockType). From the looks of it, a lot of time is spent in ProgressiveResults. This statistic was extracted during run 60/100 - 

HIGH.

Other points of interest: assembleFQL spents the most time in assembleFromAndWhereClause mostly preparing the FQLPreprocessor,

ProgressiveResults.next - NORMAL.

Methods from the FQLPreprocessor.preprocess such as parse where optimized through #7731, but as mentioned in #7991-2 there is another

method that can benefit from this cache - NORMAL.

#7855 is also an issue with the aim of integrating the fixEmptyContains into mainWalk. In my opinion, this is a low improvement overall, most of

the methods executed in preprocess take around 14 ms - LOW.

#4 - 12/11/2023 05:10 AM - Alexandru Lungu

Danut, can you test the POC by replacing ProgressiveResults with ScrollingResults? Progressive is a pessimistic approach where we avoid fetching

too many records fearing that they might get invalidated early. ScrollingResults is optimistic and retrieves all records. I don't think it is trivial to do the

replacement while honoring the invalidation as well, but maybe you can explore how ScrollingResults works without invalidation. If the improvement is

huge, we shall make a move here.

#5 - 12/11/2023 07:23 AM - Dănuț Filimon

Alexandru Lungu wrote:

Danut, can you test the POC by replacing ProgressiveResults with ScrollingResults? Progressive is a pessimistic approach where we avoid

fetching too many records fearing that they might get invalidated early. ScrollingResults is optimistic and retrieves all records. I don't think it is

trivial to do the replacement while honoring the invalidation as well, but maybe you can explore how ScrollingResults works without invalidation.

If the improvement is huge, we shall make a move here.

 

I saw multiple errors such as Failed to create ... record, Record does not exist, Invalid item, Failed to update ... record when replacing

ProgressiveResults with ScrollingResults because the operation requires a scrollable ResultSet, but is uses FORWARD_ONLY. After replacing the

ResultSet.TYPE_FORWARD_ONLY with ResultSet.TYPE_SCROLL_INSENSITIVE, the POC ran without problems. I only ran the POC once and the

results were very good compared to the baseline, ~13% for the average of the last 20 runs and ~8% for the total average. I want to run the POC tests

again (2-3 times) to get a correct measurement, is that ok or are the results good enough?

#6 - 12/11/2023 07:32 AM - Alexandru Lungu

Everything that is >1% is worth investigating. Everything >5% is a breakthrough. If your results are correct, it is something worth investigating. 

However, we shall not ignore the fact that ScrollingResults was not tested before with invalidation. You need to double check if these kind of results

are actually invalidated or not. Do a separate test-case where you invalidate the results. The query should be re-executed from that reference record.

05/02/2024 2/15

https://proj.goldencode.com/issues/7045
https://proj.goldencode.com/issues/7731
https://proj.goldencode.com/issues/7991#note-2
https://proj.goldencode.com/issues/7855


Invalidating a ScrollingResults is way worse than invalidating a ProgressiveResults. Can you provide an analysis with AdaptiveQuery invalidations

tracker using LTW (with 7156b, not including the changes here) over POC, to see how many such invalidation actually happen. AFAIK, there are

close to none. Post your results on #7026.

Also, do the tests on the full customer application regression tests (set-up according to Wiki).

#7 - 12/12/2023 03:06 AM - Alexandru Lungu

- Assignee changed from Alexandru Lungu to Radu Apetrii

- Priority changed from Normal to Urgent

Radu, please mark this as an Urgent matter, top most priority in the next 2 days - we should have it merged asap.

Danut will be caught up in #6649 pushing it over the line. The switch from ProgressiveResults to ScrollingResults shouldn't be that hard, but we need

hard testing:

Is the invalidation still honored?

Is the LAZY mode still doing its job properly?

Was the ProgressiveResults doing something extra that we stop doing with ScrollingResults.

Is the performance improvement that good; are we missing something?

Please investigate:

 saw multiple errors such as Failed to create ... record, Record does not exist, Invalid item, Failed to updat

e ... record when replacing ProgressiveResults with ScrollingResults because the operation requires a scrollab

le ResultSet, but is uses FORWARD_ONLY. After replacing the ResultSet.TYPE_FORWARD_ONLY with ResultSet.TYPE_SC

ROLL_INSENSITIVE, the POC ran without problems

 

I think we still need FORWARD_ONLY in some cases, so hard-coding it back to TYPE_SCROLL_INSENSITIVE may not be that good? Can we

detect upfront if we really need TYPE_SCROLL_INSENSITIVE or FORWARD_ONLY? Maybe it is correct to hard-code it to

TYPE_SCROLL_INSENSITIVE in this case?

Please make sure you come up with a proper solution on 7791a. After, we can get a Review and start the testing process. Thank you!

#8 - 12/12/2023 03:38 AM - Radu Apetrii

Is there a branch already created for this task or shall I create my own?

#9 - 12/12/2023 03:38 AM - Alexandru Lungu

Just created 7991a.

05/02/2024 3/15

https://proj.goldencode.com/issues/6649


#10 - 12/12/2023 03:45 AM - Radu Apetrii

Alexandru Lungu wrote:

I think we still need FORWARD_ONLY in some cases, so hard-coding it back to TYPE_SCROLL_INSENSITIVE may not be that good? Can we

detect upfront if we really need TYPE_SCROLL_INSENSITIVE or FORWARD_ONLY? Maybe it is correct to hard-code it to

TYPE_SCROLL_INSENSITIVE in this case?

 

When I first read this I instantly recalled one of Eric's comments about the TYPE_SCROLL_INSENSITIVE vs FORWARD_ONLY topic. It can be

found on #7047-5, and I believe it needs to be taken into consideration.

#11 - 12/12/2023 04:06 AM - Alexandru Lungu

Radu Apetrii wrote:

Alexandru Lungu wrote:

I think we still need FORWARD_ONLY in some cases, so hard-coding it back to TYPE_SCROLL_INSENSITIVE may not be that good?

Can we detect upfront if we really need TYPE_SCROLL_INSENSITIVE or FORWARD_ONLY? Maybe it is correct to hard-code it to

TYPE_SCROLL_INSENSITIVE in this case?

 

When I first read this I instantly recalled one of Eric's comments about the TYPE_SCROLL_INSENSITIVE vs FORWARD_ONLY topic. It can be

found on #7047-5, and I believe it needs to be taken into consideration.

 

Right :/ Changing to ScrollingResults will also break #7241. Dumping data out of the application was fixed using more granular batches of

ProgressiveResults, as ScrollingResults was not doing the job properly, loading too much data in the memory. The database cursor should be

working only with #7496 (in case the query is set to be forward-only).

Maybe we should get #7496 in trunk before approaching this (?). I still think it is quite risky now, as we don't know how database cursors work on

MariaDB. The implementation there is mainly focused on keeping TYPE_SCROLL_INSENSITIVE to determine PG to use cursors. What about

MariaDB?

If the switch (TYPE_SCROLL_INSENSITIVE instead of FORWARD_ONLY) works way better on the POC and doesn't break the large customer

application on testing, I think we can go ahead with TYPE_SCROLL_INSENSITIVE and ScrollingResults on 7156b, and see how we can deliver it

further in trunk.

If this is truly ~8%, we should do our best to get it to 7156b asap and ensure it won't break POC and the large app. First and foremost - ensure that

the solution of using TYPE_SCROLL_INSENSITIVE and ScrollingResults is correct (a.k.a handles invalidation right). We will worry about memory

consumption later.

05/02/2024 4/15

https://proj.goldencode.com/issues/7047#note-5
https://proj.goldencode.com/issues/7047#note-5
https://proj.goldencode.com/issues/7496
https://proj.goldencode.com/issues/7496


#12 - 12/12/2023 10:43 AM - Eric Faulhaber

Alexandru Lungu wrote:

Radu Apetrii wrote:

Alexandru Lungu wrote:

I think we still need FORWARD_ONLY in some cases, so hard-coding it back to TYPE_SCROLL_INSENSITIVE may not be that

good? Can we detect upfront if we really need TYPE_SCROLL_INSENSITIVE or FORWARD_ONLY? Maybe it is correct to hard-code

it to TYPE_SCROLL_INSENSITIVE in this case?

 

When I first read this I instantly recalled one of Eric's comments about the TYPE_SCROLL_INSENSITIVE vs FORWARD_ONLY topic. It

can be found on #7047-5, and I believe it needs to be taken into consideration.

 

Right :/ Changing to ScrollingResults will also break #7241. Dumping data out of the application was fixed using more granular batches of

ProgressiveResults, as ScrollingResults was not doing the job properly, loading too much data in the memory. The database cursor should be

working only with #7496 (in case the query is set to be forward-only).

Maybe we should get #7496 in trunk before approaching this (?). I still think it is quite risky now, as we don't know how database cursors work on

MariaDB. The implementation there is mainly focused on keeping TYPE_SCROLL_INSENSITIVE to determine PG to use cursors. What about

MariaDB?

If the switch (TYPE_SCROLL_INSENSITIVE instead of FORWARD_ONLY) works way better on the POC and doesn't break the large customer

application on testing, I think we can go ahead with TYPE_SCROLL_INSENSITIVE and ScrollingResults on 7156b, and see how we can deliver

it further in trunk.

If this is truly ~8%, we should do our best to get it to 7156b asap and ensure it won't break POC and the large app. First and foremost - ensure

that the solution of using TYPE_SCROLL_INSENSITIVE and ScrollingResults is correct (a.k.a handles invalidation right). We will worry about

memory consumption later.

 

I am very encouraged by the performance findings and I agree that the correctness of behavior has to be the key consideration. That being said, we

can't have this change causing OOME instability and regressing #7241 and #7496. This change will need to be regression tested carefully, not just on

the POC and large app: note that it was with an early ChUI app on PostgreSQL where the OOME problems originated.

If the behavior/performance/resources are different across different databases, we can always use the dialect infrastructure to tailor the solution to the

database in use. I agree that we should test all solutions (for this and #7496) on MariaDB as well.

05/02/2024 5/15

https://proj.goldencode.com/issues/7047#note-5
https://proj.goldencode.com/issues/7496
https://proj.goldencode.com/issues/7496
https://proj.goldencode.com/issues/7496
https://proj.goldencode.com/issues/7496


#13 - 12/13/2023 03:14 AM - Dănuț Filimon

Alexandru Lungu wrote:

Invalidating a ScrollingResults is way worse than invalidating a ProgressiveResults. Can you provide an analysis with AdaptiveQuery

invalidations tracker using LTW (with 7156b, not including the changes here) over POC, to see how many such invalidation actually happen.

AFAIK, there are close to none. Post your results on #7026.

Also, do the tests on the full customer application regression tests (set-up according to Wiki).

 

Alexandru, the LTW test is going to take a fair bit since the process is very slow so I'll put it aside until I finish testing #6649 and #5768. I ran the POC

and it reached run 30/100 and had <1.5k invalidations, there were quite a lot of AdaptiveQuery instances.

I shared with Radu a snapshot created with VisualVM of the POC test for PreselectQuery, AdaptiveQuery and PresortQuery so he can take a look

and investigate.

#14 - 12/13/2023 08:40 AM - Radu Apetrii

Good news: large application tests (a.k.a. functional tests) pass.

Bad news: while running the adaptive_scrolling testcases, I found the following mismatches:

On test adaptive_use_same_buffer/adaptive-noscroll-set51.p: ShowHide

Progressive Scrolling Progress

2 4 1

2 2 1

2 2 2

2 2 3

2 4 1

2 1 2

2 1 3

2 4 1

2 1 2

2 1 3

2 2 1

2 2 2

2 2 3

This isn't necessarily a regression since it wasn't working before. I just find it funny how Progressive generates half of the result and Scrolling the

other half in order to have the full result as in Progress.

On test adaptive_use_same_buffer/adaptive-noscroll-set54.p: ShowHide

Progressive Scrolling Progress

10 10 10

10 10 2

10 10 2

4 4 4

4 4 4

4 4 4

10 10 10

10 10 10

10 10 2

10 10 2

4 4 4

4 4 4

4 4 4

10 10 10

10 10 2

10 10 2

4 4 4

4 4 4

4 4 4

10 10 10

This test has always been a problem and it seems like it continues to be. Here, Scrolling isn't sensitive to the data change and skips the last line

(that appears in both Progressive and Progress).

05/02/2024 6/15

https://proj.goldencode.com/issues/6649


I'll move on and test the performance, but I'll keep these results in mind and think of a solution.

#15 - 12/14/2023 07:35 AM - Radu Apetrii

I finished running the performance tests. The results are quite good:

By setting TYPE_SCROLL_INSENSITIVE instead of FORWARD_ONLY (and nothing else), the improvement is ~-1%.

By replacing ProgressiveResults with ScrollingResults, plus the above mentioned change, the improvement is ~-4.8%.

I guess the next objective would be to check the ScrollingResults implementation, maybe we can get those two failing tests fixed (#7991-14)?

#16 - 12/14/2023 08:01 AM - Alexandru Lungu

Exactly, please do.

EDIT: sometime ago I've seen that the invalidation on the query was done only if the record change event was generated by the queried buffer. I don't

think this is right; there were multiple examples in which changing record from another buffer was also invalidating. ProgressiveResults has a second

check (if the last record in the prev. batch doesn't match the record in the next batch, it will invalidate). This does not exist in ScrollingResults, so it is

"exposed" to some new problems.

#17 - 12/14/2023 08:51 AM - Eric Faulhaber

Radu Apetrii wrote:

I finished running the performance tests.

[...]

 

Which dialect(s) did you test?

#18 - 12/14/2023 08:54 AM - Radu Apetrii

Eric Faulhaber wrote:

Radu Apetrii wrote:

I finished running the performance tests.

[...]

 

Which dialect(s) did you test?

 

Only PostgreSQL. Now that you mention, I'll add MariaDB performance/regression testing to the to-do list.

05/02/2024 7/15

https://proj.goldencode.com/issues/7991#note-14


#19 - 12/14/2023 11:39 AM - Eric Faulhaber

Do any of the tests include a query which would generate a very large result set? I would think that there would be some that at least would trigger

multiple ProgressiveResults brackets, since we are seeing a performance improvement by switching to ScrollingResults, which effectively is always

one "bracket".

Further, does any test generate a very large result set, but then only use one or a small number of those results? Something like:

FOR EACH some_large_table WHERE <some wide open condition> NO-LOCK:

   <do something...>

   LEAVE.

END.

 

In this case, we leave after only one iteration, but a more realistic case would do some work until some separate condition from that of the WHERE

clause was reached, then leave. In such a case, it could be less clear that only one or a handful of records might actually be used, though thousands

might match the WHERE clause.

This type of code was the reason ProgressiveResults was created. It represents a case where ProgressiveResults would be expected to perform

much better (at least on PostgreSQL) than ScrollingResults.

As noted earlier, large result sets (regardless of whether only a handful of records are used) are also where we could get into memory trouble by

switching away from TYPE_FORWARD_ONLY. See https://jdbc.postgresql.org/documentation/query/#getting-results-based-on-a-cursor. This

documentation was written a long time ago, but the site overall is current, so I don't think this aspect (i.e., the driver collecting all results at once and

the case for server-side cursors) has changed.

#20 - 12/15/2023 03:43 AM - Alexandru Lungu

- Priority changed from Urgent to High

I think we should take an incremental approach on this. Lets focus on #7496 and merge it first, before moving on this one. That ensure that we

actually have FORWARD-ONLY run-time (including the save of the remaining results if the transaction ends and the portal closes - test if this is

dialect specific). Danut, mind that ForwardResults are already in trunk and are used for PresortQuery quite well already.

I will move this to High as there are several aspects to take care of first - having it on emergency is not feasible now.

We need lots of testing (with large customer applications, regression tests, custom tests) before moving on with #7496. Danut, please refer to 

4GL_Unit_Testing and ask Serban for advice first as he has some knowledge on testing with it already. Please update #7496 with the points left to

solve and eventually move it to Internal Testing if there are none left - will continue discussion there.

This task is pending #7496.

05/02/2024 8/15

https://jdbc.postgresql.org/documentation/query/#getting-results-based-on-a-cursor
https://proj.goldencode.com/issues/7496
https://proj.goldencode.com/issues/7496
https://proj.goldencode.com/projects/p2j/wiki/4GL_Unit_Testing
https://proj.goldencode.com/issues/7496
https://proj.goldencode.com/issues/7496


#21 - 12/15/2023 03:57 AM - Dănuț Filimon

I actually tested the changes from #7496 previously for #7767 as the changes could be a small performance boost and ended up with a few

exceptions which is not good. I'll need to take a look at the implementation again and check if everything is working well before moving forward.

#22 - 12/19/2023 03:57 PM - Greg Shah

Do we have any chance of finishing this task by Thursday EOD?

#23 - 12/20/2023 08:25 AM - Alexandru Lungu

- Subject changed from PresortQuery.next improvements to use ScrollingResults instead of ProgressiveResults when FORWARD-ONLY mode and

database cursors are available.

Greg, the whole task won't be finished by Thursday - most of the work moved to #7496. There is a change there with -0.7% that will get merged asap.

After, the whole 7496a will be completed, tested and merged. At that point, we can actually return to the work here (#7991). Once we have support for

FORWARD-ONLY, we can safely move most of the queries (used in FOR EACH loops) to ForwardResutls and benefit from database cursors (at

least for PG). This should be largely tested. Ultimately, MariaDB should be tested as well.

I will change the name here to: use ScrollingResults instead of ProgressiveResults when FORWARD-ONLY mode and database cursors are

available.

#24 - 01/31/2024 04:40 AM - Alexandru Lungu

- Assignee changed from Radu Apetrii to Dănuț Filimon

Danut is mostly into #7496 which is very related to this.

#25 - 01/31/2024 04:41 AM - Alexandru Lungu

- Related to Bug #7496: finish support for query:forward-only attribute added

#26 - 01/31/2024 04:45 AM - Alexandru Lungu

Eric, please mark this as a top candidate for performance improvement. Once we have FORWARD-ONLY fully implemented with #7496, we can:

Adjust the FOR-EACH queries to use ForwardOnlyResults with db-side cursors. This will reduce the database queries and the total work done

by AdaptiveQuery.

Adjust the OPEN QUERY queries that use FORWARD-ONLY with db-side cursors. This will (again) reduce the database queries.

The reduction happens because we don't use ProgressiveResults anymore for such queries.

#27 - 02/14/2024 03:16 AM - Dănuț Filimon

Rebased 7991a to trunk revision 14985.

#28 - 02/15/2024 03:46 AM - Dănuț Filimon

- % Done changed from 0 to 30

Committed 7991a/rev.14986. Adjusted FOR-EACH queries to use ForwardResults.

I've looked into how we can make use of ForwardResults when FOR EACH queries are present and a previous update added the query to the

forEach call in the converted code. This was not available in 7991a, so I rebased the branch when I noticed this. The changes include the addition of

05/02/2024 9/15

https://proj.goldencode.com/issues/7496
https://proj.goldencode.com/issues/7496
https://proj.goldencode.com/issues/7991
https://proj.goldencode.com/issues/7496
https://proj.goldencode.com/issues/7496


the forwardOnly flag to AbstractQuery (by default false) and setting it to true in the forEachWorker when the query is an AdaptiveQuery.

Currently the ForwardResults replace the usage of ProgressiveResults for the mentioned case and I've tested these changes with POC performance

and regression tests. I also wanted to run ChUI tests but 6667e does not have the additional query parameter change.

In case of the performance tests I did not find a noticeable improvement and created a few JMX counter to monitor how often the changes are used:  

For the POC performance tests (warmup run + 5 runs), around 4.76% AdaptiveQuery instances will create ForwardResults and 68.8% of the

forEachWorker calls will result into an AdaptiveQuery being used. The number are great, but the performance results of the 100 runs are not as

expected. I suspect that the number of brackets is very low in the case of ProgressiveResults, this would explain the performance results since the

number of times the results are retrieved closely match the number of times ForwardResults would be created. The solution for this would be to

reduce the base of the ProgressiveResults to something like 5 or 8 and check the performance for this cases.

#29 - 02/15/2024 04:00 AM - Alexandru Lungu

The solution for this would be to reduce the base of the ProgressiveResults to something like 5 or 8 and check the performance for this cases.

05/02/2024 10/15



 

This will make the current solution in trunk slower to prove that ForwardResults is faster. This is not an option.

For the POC performance tests (warmup run + 5 runs), around 4.76% AdaptiveQuery instances will create ForwardResults

 

This is not as expected 4.75% is quite low. Does this mean that there are way more OPEN QUERY queries than FOR EACH queries; so this leads to

~95% AdaptiveQuery being generated by OPEN QUERY? Or maybe we should look into AdaptiveQuery used as components for CompoundQuery?

Please clarify which is the 4GL construct that generates the most AdaptiveQuery instances: OPEN QUERY, FOR EACH or CompoundQuery

component.

#30 - 02/15/2024 07:38 AM - Dănuț Filimon

Alexandru Lungu wrote:

The solution for this would be to reduce the base of the ProgressiveResults to something like 5 or 8 and check the performance for this

cases.

 

This will make the current solution in trunk slower to prove that ForwardResults is faster. This is not an option.

 

Sorry for the misunderstanding, the solution I suggested was for testing to see if we have a performance improvement, to use 5 and 8 and see if the

number of brackets was still close to the number of ForwardResults being created. If we use 5 and 8 we will have more brackets and we will be able

to notice a change in performance. This is not a "solution", but something that could help with investigating the performance in detail.

For the POC performance tests (warmup run + 5 runs), around 4.76% AdaptiveQuery instances will create ForwardResults

 

This is not as expected 4.75% is quite low. Does this mean that there are way more OPEN QUERY queries than FOR EACH queries; so this

leads to ~95% AdaptiveQuery being generated by OPEN QUERY? Or maybe we should look into AdaptiveQuery used as components for

CompoundQuery?

 

Please note that executeQuery also has a isLazyMode() call that precedes isForwardOnly() and creates ScrollingResults, this also influences the

ForwardResults since they may not be created. I will make sure to test how many ScrollingResults and ProgressiveResults are created next time.

Please clarify which is the 4GL construct that generates the most AdaptiveQuery instances: OPEN QUERY, FOR EACH or CompoundQuery

component.

 

Working on it.

05/02/2024 11/15



#31 - 02/15/2024 11:25 AM - Dănuț Filimon

I've made more JMX counters and obtained new results (POC performance warmup + 5 runs):  

Counter Count 1 Count 2

Number of

AdaptiveQuery

components of

a forward-only

CompoundQue

ry

2340 2340

Total number of

AdaptiveQuery

instances

created

133811 133811

Number of

times where

Adaptive.execu

teQuery is

called

127423 127423

Number of

times

ScrollingResult

s are created

(lazy clause)

65377 65377

Number of

times

ForwardResults

are created

6069 7507

Number of

times

ProgressiveRes

ults are created

55977 54539

Number of

times FOR

EACH worker is

called

87505 87505

Number of

times the query

of the FOR

EACH worker is

an

AdaptiveQuery

60197 60197

Number of

times the query

of the FOR

EACH worker is

a

CompoundQue

ry

1478 1478

Number of

times the query

of the FOR

EACH worker is

another type of

query

25830 25830

The Count 1 is an update to the previous results and the Count 2 will set the foward-only flag to true for any AdaptiveQuery component of a

CompoundQuery. In the second set of results, the percentage of AdaptiveQuery instances that create ForwardResults went from 4.76% to 5.9% (this

percentage excludes AdaptiveQuery components that are added through QueryWrapper and by PresortCompoundQuery - which I could not find any

component being used but would like if this could be confirmed).

I also confirmed that 9750 CompoundQuery instances are created, and there are an additional 20907 AdaptiveQuery components which could be

made forward-only and this would bring the percentage up to ~16.8%. But those are the queries that are not generated by FOR EACH and need to be

investigated.

Alexandru Lungu wrote:

Please clarify which is the 4GL construct that generates the most AdaptiveQuery instances: OPEN QUERY, FOR EACH or CompoundQuery

component.

05/02/2024 12/15



 

From a total of 133811 AdaptiveQuery instances created, 60197 are directly used in FOR EACH, 23247 are components of a CompoundQuery and

the rest of 50367 should be generated by OPEN QUERY.

From my findings, the OPEN QUERY has the most potential here to raise the percentage of AdaptiveQuery instances that are forward-only.

#32 - 02/16/2024 10:30 AM - Greg Shah

I also wanted to run ChUI tests but 6667e does not have the additional query parameter change.

 

Make sure you are using 6667i which is being rebased and is kept closer to trunk.

#33 - 02/19/2024 06:58 AM - Dănuț Filimon

Greg Shah wrote:

I also wanted to run ChUI tests but 6667e does not have the additional query parameter change.

 

Make sure you are using 6667i which is being rebased and is kept closer to trunk.

 

Thank you for the information, I was planning to shift to 6667f. Before anything else, is 6667i a stable branch that passes all regression tests? The

wikis only mentions 6667e / 6667f, will the documentation be updated?

#34 - 02/19/2024 07:35 AM - Greg Shah

Dănuț Filimon wrote:

Greg Shah wrote:

I also wanted to run ChUI tests but 6667e does not have the additional query parameter change.

 

Make sure you are using 6667i which is being rebased and is kept closer to trunk.

05/02/2024 13/15



 

Thank you for the information, I was planning to shift to 6667f. Before anything else, is 6667i a stable branch that passes all regression tests?

The wikis only mentions 6667e / 6667f, will the documentation be updated?

 

Tomasz: Please advise.

#35 - 02/19/2024 07:37 AM - Tomasz Domin

Greg Shah wrote:

Dănuț Filimon wrote:

Greg Shah wrote:

I also wanted to run ChUI tests but 6667e does not have the additional query parameter change.

 

Make sure you are using 6667i which is being rebased and is kept closer to trunk.

 

Thank you for the information, I was planning to shift to 6667f. Before anything else, is 6667i a stable branch that passes all regression

tests? The wikis only mentions 6667e / 6667f, will the documentation be updated?

 

Tomasz: Please advise.

 

Please use 6667i, I'll update wiki pages.

05/02/2024 14/15



#36 - 02/19/2024 08:52 AM - Dănuț Filimon

I've gathered more information for #7991-31.

From a total of 133811 AdaptiveQuery instances created, 60197 are directly used in FOR EACH and 44687 are created in QueryWrapper.prepare()

(this is resulted from a CREATE QUERY qh. ... qh:QUERY-PREPARE("FOR EACH pt1") type of statement). This leaves 28927 which should be from

generated from OPEN QUERY and use QueryWrapper.assign() but the method is not called at all. AdaptiveFind instances are not generated, but

CompoundQuery$Optimizer.serverJoinAdaptive() generates 5680 AdaptiveQuery instances so we actually have 23247 AdaptiveQuery that I don't

know yet how they are instantiated.

#37 - 02/19/2024 09:21 AM - Tomasz Domin

Greg Shah wrote:

Thank you for the information, I was planning to shift to 6667f. Before anything else, is 6667i a stable branch that passes all regression

tests? The wikis only mentions 6667e / 6667f, will the documentation be updated?

 

Tomasz: Please advise.

 

Once more. I've updated wiki page.

Just to note - please use branch 6667i. You also need to apply patch taken from #6667-823

If you would need a newer 6667i I will rebase this week to the latest trunk.

Powered by TCPDF (www.tcpdf.org)

05/02/2024 15/15

https://proj.goldencode.com/issues/7991#note-31
http://www.tcpdf.org

