
TRPL - Feature #8062

add a SWITCH rule in TRPL

11/20/2023 09:44 AM - Constantin Asofiei

Status: WIP Start date:

Priority: Normal Due date:

Assignee: Constantin Asofiei % Done: 0%

Category: Estimated time: 0.00 hour

Target version:

billable: No vendor_id: GCD

Description

History

#1 - 11/20/2023 09:52 AM - Constantin Asofiei

Greg, I have changes (without having new bytecode being generated) for a structure like this:

<switch>...expr

 <case>firstExpr

 <value>secondExpr</value>

 <value>...</value>

 <value></value>

 <value></value>

 /// rules

 </case>

 <default>

 </default>

</switch>

The point here is that:

values for each case can not overlap between them

there is no 'fall-through' (i.e. the Java break is always assumed)

on first execution of the switch, the case values are evaluated and assumed to be numbers. This does not assume that the expression is a

constant - it can be anything which evaluates to a number. Each value is associated via a map with the case instance to execute.

once we have this, a map lookup is done to find the switch expression value, and assuming that one is found, the case instance is executed.

otherwise, the default code is executed (if it exists)

I've created 8062a from trunk rev 14835. The current changes are in rev 14836 - they rely on existing Rule infrastructure, kind of dirty, but more than

this will require more in-depth refactoring. Please take a look and let me know what you think.

05/02/2024 1/3

#2 - 11/21/2023 09:34 AM - Constantin Asofiei

- Project changed from Conversion Tools to TRPL

#3 - 11/24/2023 11:16 AM - Constantin Asofiei

Alexandru, my changes are in 8062a rev 14841 (on top of trunk 14839). Please do a performance test with 7156b. Thanks.

#4 - 11/27/2023 04:43 AM - Alexandru Lungu

Picking them up now and start testing. Expect for a result in the next 2/3 hours.

#5 - 11/27/2023 11:06 AM - Alexandru Lungu

The performance tests on this item are highly volatile. On average of 100 iterations:

test 1: 8.383s

test 2: 8.435s

test 3: 8.835s

test 4: 8.839s

test 5: 8.528s

test 6: 8.858s

test 7: 8.858s

test 8: 8.582s

My baseline is ~8.500s.

Weirdly, on some tests (3, 4, 6 and 7), the time was actually increasing in the last iterations. Is there any chance to introduce a leak? Or maybe is just

my machine that is going crazy (doing some background work).

If we are to ignore the outsiders (>8.8s), the average is decent representing around 0.3% improvement. However, I can't easily ignore the fact that

half of the tests are in fact slower.

#6 - 12/01/2023 05:38 PM - Greg Shah

Code Review Task Branch 8062a Revisions 14853 through 14855

Sorry it took some time to review. Everything looks good.

The only problem I see is in annotations/cleanup.rules:

This original code:

 <rule>type == prog.kw_editing and parent.type == prog.editing_block

 <action>copy.remove()</action>

 </rule>

does not seem like it can be replaced by this:

 <case>

 <value>prog.kw_editing</value>

 <value>prog.editing_block</value>

 <!-- kw_editing under an editing block is useless (easier to remove it

 here than in the parser) -->

 <action>copy.remove()</action>

 </case>

05/02/2024 2/3

Powered by TCPDF (www.tcpdf.org)

05/02/2024 3/3

http://www.tcpdf.org

