
Database - Bug #8196

Reduce number of AbstractTempTable._hasRecords calls to avoid BufferManager.activeBuffers

01/15/2024 04:18 AM - Dănuț Filimon

Status: Test Start date:

Priority: Normal Due date:

Assignee: Dănuț Filimon % Done: 100%

Category: Estimated time: 0.00 hour

Target version:

billable: No case_num:

vendor_id: GCD

Description

Related issues:

Related to Database - Bug #7167: Associating records from opened buffers to n... Closed

History

#1 - 01/15/2024 04:25 AM - Dănuț Filimon

While retesting different session reclaiming lifespans for #7167, it was noted that there is almost no difference between "No records to associate" and

"Records associated" counts (note the table below that was copied from #7167-10).

Counts Reclaiming

disabled

1s lifespan 10s lifespan

No matching

persistence

285708435 5874605 3564224

No records to

associate

31051569 26227813 26226169

Records

associated

2517852 614027 613197

Sessions

created

124912 1127 89

Sessions

reclaimed

0 123767 124805

After a retest of the same application and scenario with the default session lifespan, I compared the counters obtained from

AbstractTempTable._hasRecords calls and separated them from other sources in the table below (also copied from #7167-12).

Cou

nts

from

Abst

ract

Tem

pTa

ble

from

Buff

erM

anag

er /

othe

r

Num

ber

of

calls

1131

2

1188

No

matc

hing

persi

sten

ce

3534

544

2457

786

No

reco

rds

to

asso

ciate

2623

7166

1974

Rec

ords

asso

6015

46

1123

05/04/2024 1/5

https://proj.goldencode.com/issues/7167
https://proj.goldencode.com/issues/7167#note-10
https://proj.goldencode.com/issues/7167#note-12

ciate

d

The purpose of this issue is to find a way to reduce the number of calls to BufferManager.activeBuffers that are resulted from

AbstractTempTable._hasRecords.

#2 - 01/15/2024 04:25 AM - Dănuț Filimon

- Related to Bug #7167: Associating records from opened buffers to new sessions is slow added

#3 - 01/15/2024 08:04 AM - Dănuț Filimon

After a fix involving going over the buffers from AbstractTempTable.allBuffers and execute the same logic from activeBuffers, I noticed that whenever

_hasRecords is called and the activeBuffers is reached, false is always returned. This means that the condition where the temp table is checked to be

equal to the current object is never true. The logic was first introduced in trunk/rev.10452, since then it was improved by direct access.

#4 - 01/15/2024 08:38 AM - Alexandru Lungu

Danut, the code using allBuffers is meant to check records that were not yet flushed to the database (transient) and are stored only in FWD. Thus, we

need to check all buffers to see if there is a record that was not flushed yet.

This can be improved in two ways:

Check if we really need to check the transient records for some use-cases.

The code is called from TempTableBuilder.clear - is this actually considering transient records?

It is also called by AbstractTempTable.setCanUndo - is this a bottleneck (?) how often is _hasRecords hit from this spot?

Iterate only the buffers over that table; not all open buffers.

#5 - 01/15/2024 09:03 AM - Dănuț Filimon

The POC application calls AbstractTempTable.hasRecords and clear/setCanUndo are not called at all. I noticed that this method can be directly

called from the converted code (in this case, in a for each loop).

#6 - 01/15/2024 09:04 AM - Dănuț Filimon

- Assignee set to Dănuț Filimon

- Status changed from New to WIP

#7 - 01/15/2024 09:24 AM - Dănuț Filimon

Alexandru Lungu wrote:

This can be improved in two ways:

Check if we really need to check the transient records for some use-cases.

The code is called from TempTableBuilder.clear - is this actually considering transient records?

It is also called by AbstractTempTable.setCanUndo - is this a bottleneck (?) how often is _hasRecords hit from this spot?

Both methods should check for transient records because they involve checking if there are any records into the table (and if any, the methods will

throw an error).

05/04/2024 2/5

#8 - 01/15/2024 09:28 AM - Alexandru Lungu

I wasn't aware this could be called directly from the converted code.

#9 - 01/22/2024 07:21 AM - Dănuț Filimon

Created 8196a.

#10 - 01/22/2024 08:50 AM - Dănuț Filimon

- Status changed from WIP to Review

Committed 8196a/rev.14936. Removed the call to activeBuffers from AbstractTempTable._hasRecords and integrated it's functionality into the

method, now only the buffers of the current table will be iterated.

#11 - 01/30/2024 05:38 AM - Alexandru Lungu

I suspect the code duplicate to be quite bad architecturally.

Lets overload activeBuffers(Persistence, boolean) with activeBuffers(Persistence, boolean, Iterator<Buffer>). The first one will call by default the

second one with all buffers. However, AbstractTempTable will call it only with the iterator of that table's buffers.

Please refactor.

#12 - 01/30/2024 06:26 AM - Dănuț Filimon

Note that activeBuffers iterates RecordBuffer while we want to iterate Buffer instances, so those need to be casted like so: RecordBuffer next =

((BufferReference) iter.next()).buffer();. This was the main reason I did not create another method, but we can pass Iterator<RecordBuffer> as an

additional parameter and prepare the Iterator beforehand.

#13 - 01/30/2024 07:06 AM - Dănuț Filimon

- % Done changed from 0 to 100

Committed 8196a/rev.14937. I've created a separate method to check each buffer individually and it can be used directly by _hasRecords().

Alexandru, please review and let me know if I can go ahead with the POC performance tests.

#14 - 01/30/2024 08:19 AM - Alexandru Lungu

- Status changed from Review to Internal Test

- % Done changed from 100 to 0

The changes look good to me!

Danut, you can inline isActiveBuffer by doing return <large-if-condition> && buffer.getCurrentRecord() != null;. This can be done in

AbstractTempTable as well if (...isActiveBuffer() && next.getParentTable().equals(this)) return true;

Please go ahead with the testing. This requires some massive testing as we are changing the way we analyze if a temp-table is empty or not:

test POC for performance

test large customer application regression tests

test large customer application

05/04/2024 3/5

#15 - 01/30/2024 08:31 AM - Dănuț Filimon

- % Done changed from 0 to 100

Alexandru Lungu wrote:

The changes look good to me!

Danut, you can inline isActiveBuffer by doing return <large-if-condition> && buffer.getCurrentRecord() != null;. This can be done in

AbstractTempTable as well if (...isActiveBuffer() && next.getParentTable().equals(this)) return true;

I inlined the conditions in 8196a/rev.14938 and will now begin testing.

#16 - 01/31/2024 07:07 AM - Dănuț Filimon

POC regression tests passed and the results of the performance tests showed an improvement of 5.27% for the average of the last 20 runs and

0.91% for the total average.

I also did a retest on the scenario mentioned in #8196-1 and got the following results:

Counts AbstractTempTabl

e

BufferManager

Total calls 11312 747

Found active

buffer

0 994

No matching

persistence

0 1346652

No records to

associate

59758 1401

Records

associated

0 994

A few explanations of the counters used:

Total calls: number of calls to AbstractTempTable._hasRecords() / BufferManager.activeBuffers().

Found active buffer: isActiveBuffer() returns true.

No matching persistence / No records to associate / Records associated: as before, but the counters are split based on which method is called.

#17 - 02/01/2024 03:29 AM - Alexandru Lungu

05/04/2024 4/5

https://proj.goldencode.com/issues/8196#note-1

This is good news. The changes are quite safe from my POV.

This is ready for merge. Greg, this is a performance improvement we need before rebasing 7156b.

#18 - 02/01/2024 07:28 AM - Greg Shah

- Status changed from Internal Test to Merge Pending

8196a can merge after 8107a.

#19 - 02/01/2024 07:46 AM - Dănuț Filimon

- Status changed from Merge Pending to Test

Branch 8196a was merged into trunk as rev.14961 and archived.

Powered by TCPDF (www.tcpdf.org)

05/04/2024 5/5

http://www.tcpdf.org

